Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox)

Published Web Location

https://www.sciencedirect.com/science/article/pii/S0967063716303570
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

We examined the diet of a common midwater predator, the longnose lancetfish (Alepisaurus ferox, n=1371), with respect to fork length, season, and capture location within the North Pacific Subtropical Gyre (NPSG). While A. ferox fed diversely across 97 prey families, approximately 70% of its diet by wet weight consisted of seven prey families (fishes: Sternoptychidae, Anoplogastridae, Omosudidae, Alepisauridae; hyperiid amphipods: Phrosinidae; octopods: Amphitretidae; polychaetes: Alciopidae). Altogether, these micronekton prey families constitute a poorly known forage community distinct from those exploited by other pelagic predators and poorly sampled by conventional methods. We demonstrate ontogenetic variation in diet between two size classes of A. ferox (<97 cm fork length=“small”, ≥97 cm fork length=“large”). Large A. ferox consumed more fish and octopods, fewer crustaceans, and were more cannibalistic than small A. ferox. Ontogenetic shifts in vertical foraging habitat were observed as the consumption of larger and more mesopelagic prey with increasing fork length. Spatial and seasonal variation in the diet of A. ferox is consistent with expected patterns of variation in prey distribution with respect to oceanographic features of the NPSG. Within both size classes, the diets of specimens collected from the oligotrophic core of the NPSG were more diverse than those collected near the boundaries of the gyre and appeared to track seasonal variation in the position of the northern boundary of the gyre. Our data suggest seasonal and spatial variability in the composition of midwater forage communities exploited by A. ferox across the NPSG, and demonstrate that sustained monitoring of diet could provide valuable insights into long-term changes in these understudied communities.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item