Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Optical probing of local membrane potential with fluorescent polystyrene beads

Abstract

The study of electrical activity in single cells and local circuits of excitable cells, such as neurons, requires an easy-to-use, high-throughput methodology that allows for the measurement of membrane potential. Investigating the electrical properties in specific subcompartments of neurons, or in a specific type of neurons, introduces additional complexity. An optical voltage-imaging technique that allows high spatial and temporal resolution could be an ideal solution. However, most valid voltage-imaging techniques are nonspecific. Those that are more site-directed require a lot of preliminary work and specific adaptations, among other drawbacks. Here, we explore a new method for membrane voltage imaging, based on Förster resonance energy transfer between fluorescent polystyrene (FPS) beads and dipicrylamine. Not only has it been shown that fluorescence intensity correlates with membrane potential, but more importantly, the membrane potential from individual particles can be detected. Among other advantages, FPS beads can be synthesized with surface functional groups and can be targeted to specific proteins by conjugation of recognition molecules. Therefore, in the presence of dipicrylamine, FPS beads represent single-particle detectors of membrane potential that can be localized to specific membrane compartments. This new and easily accessible platform for targeted optical voltage imaging can further elucidate the mechanisms of neuronal electrical activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View