- Main
Polyclonal CD5+/CD19+ B1a lymphocytes after allogeneic stem cell transplantation: a potential diagnostic pitfall.
Published Web Location
https://doi.org/10.4322/acr.2020.147Abstract
In adults, B-lymphocytes comprise approximately 10% of circulating lymphocytes. The majority of peripheral B cells are B2 cells ("Mature" B-cells), which function as part of the humoral adaptive immune system. B1 cells ("Innate-like" B cells) are another sub-class of B lymphocytes, considered as innate immune cells with a characteristic phenotype (CD20+, CD27+, CD43+, CD70-, CD11b+, sIgM++, sIgD+) which can be divided into two subtypes; B1a (CD5+): spontaneously produce broadly reactive natural IgM, and B1b (CD5-): can generate T-cell independent, long-lasting IgM. There is very limited data available, indicating a correlation between allogeneic bone marrow transplantation and an increase in B1a cells. Here we present a case of a 17-year-old female with homozygous sickle cell disease (HbSS disease) who underwent hematopoietic stem cell transplant (HSCT). Approximately seven months post-transplant, she was found to have 16% immature mononuclear cells on complete blood count (CBC)-differential report. A follow-up peripheral blood flow cytometry showed that these cells were polyclonal CD5+/CD20+ B-cells, and comprised 66% of lymphocytes. Further workup and follow up failed to reveal any lymphoproliferative disorders. It is important not to misdiagnose these cells as an atypical CD5+ lymphoproliferative disorder. The presence of B1a cells has not been widely reported in non-neoplastic post-stem cell transplanted patients. This case also adds to and expands our knowledge regarding the presence of increased circulating B1a cells after stem cell transplant in a patient with no history of hematological malignancy.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-