Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Eigenstate thermalization hypothesis.

Abstract

The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View