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Abstract 
 

Enabling Low Carbon Communities: 
The Roles of Smart Planning Tools and Place-Based Solutions 

 
 

By 
 

Christopher Mark Jones 
 

Doctor of Philosophy in Energy and Resources 
 

University of California, Berkeley 
 

Professor Daniel M. Kammen, Chair 
 
 
 
The scale of the climate crisis is immense and solutions are urgently needed. This dissertation 
develops tools to provide highly tailored carbon footprint information and place-based solutions 
to U.S. households and communities in three complimentary studies. The first study quantifies 
the greenhouse gas (GHG) savings potential of different U.S. metropolitan areas and household 
types within locations, developing average household carbon footprint (HCF) profiles for 28 
metropolitan areas, 6 household sizes and 12 income brackets. The model includes emissions 
embodied in transportation, energy, water, waste, food, goods, and services, and further 
quantifies GHG and financial savings from potential mitigation actions across all locations and 
household types. The size and composition of carbon footprints vary dramatically between 
geographic regions (38 to 52 tCO2e) and within regions based on basic demographic 
characteristics (<20 to >80 tCO2e). Despite these differences, large cash-positive carbon 
footprint reductions are evident across all household types and locations. 
 
Using national household surveys, the second study develops econometric models to estimate 
HCF for essentially all U.S. zip codes, cities, counties, and metropolitan areas. The results 
demonstrate consistently lower HCF in urban core cities (~40 tCO2e) and higher carbon 
footprints in outlying suburbs (~50 tCO2e), with a range from ~25 to >80 tCO2e in the 50 largest 
metropolitan areas. In contrast to a vast literature demonstrating GHG savings in more dense 
cities, analysis of all U.S. locations presents a more complex picture. Population density exhibits 
a weak but positive correlation with HCF until a density threshold is met, after which range, 
mean, and standard deviation of HCF decline. While population density contributes to relatively 
low HCF in the central cities of large metropolitan areas, the more extensive suburbanization in 
these regions contributes to an overall net increase in HCF compared to smaller metropolitan 
areas. Suburbs alone account for ~50% of total U.S. HCF. 
 
Results from this quantitative research have informed the development of “smart” online carbon 
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management tools that allow users to quickly calculate, compare and manage household carbon 
footprints, and to visualize average community carbon footprints using high spatial resolution 
interactive maps. Yet, the potential benefits of such tools are limited to those who find them, and 
the information may often do little to increase intrinsic motivation to adopt new low carbon 
technologies and practices. Following lessons from behavioral sciences, a subsequent study 
engaged ~2,700 residents in eight participating cities to track and reduce household carbon 
footprints and compete for the title of “Coolest California City.” The yearlong pilot project 
achieved an estimated 14% reduction in electricity consumption, lending evidence that 
community-scale climate initiatives, enabled by sophisticated information and communication 
technologies and motivated local program implementers, can help scale up tailored, place-based 
climate solutions. Together, this research and accompanying tools and programs provide a 
framework for individuals and communities to prioritize GHG mitigation opportunities and 
stimulate collective climate action.  
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FTE	
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  time	
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g	
  	
  	
   	
   gram(s)	
  	
  
GHG	
  	
  	
   	
   greenhouse	
  gas	
  	
  
GWP	
  	
  	
   	
   Global	
  Warming	
  Potential	
  	
  
HV/AC	
  	
  	
   heating,	
  ventilating,	
  and	
  air	
  conditioning	
  	
  
IEA	
   	
   International	
  Energy	
  Agency	
  
IPCC	
  	
  	
   	
   Intergovernmental	
  Panel	
  on	
  Climate	
  Change	
  	
  
J	
  	
  	
   	
   joule	
  	
  
kg	
  	
  	
   	
   kilogram(s)	
  	
  
kWh	
  	
  	
   	
   kilowatt-­‐hour(s)	
  	
  
lb(s)	
  	
  	
   	
   pound(s)	
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   landfill	
  gas	
  	
  
MMBtu	
  	
  	
   one	
  million	
  British	
  thermal	
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mpg	
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  per	
  gallon	
  	
  
mt	
  	
   	
  	
   metric	
  ton(s)	
  	
  	
  
MWh	
  	
  	
  	
   megawatt-­‐hour(s)	
  	
  
t	
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  ton(s)	
  
VMT	
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  miles	
  traveled	
  
WBCSD	
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  Council	
  for	
  Sustainable	
  Development	
  	
  
WRI	
  	
  	
   	
   World	
  Resources	
  Institute	
  	
  
 
 
  



   vii 

Acknowledgements 
 
I am extremely grateful to numerous people who have supported me throughout my time at U.C. 
Berkeley.  
 
First, I would like to thank my dissertation committee, especially my chair, advisor and boss, 
Professor Dan Kammen, without whose guidance and support I would not be here. Dan has been 
there at every turn, pushed me when I needed pushing and helped me develop an appreciation for 
thinking big and small, fast and slow. I owe a real debt of gratitude to Professor David Anthoff 
who served as my supportive qualifying exam chair. Professor Joan Walker generously stepped 
in at a late stage to help evaluate the behavioral aspects of my dissertation. Professor Stephen 
Wheeler’s work has been an important inspiration to me. I hope someday to return his books, 
Climate Change and Social Ecology, and Planning for Sustainability to the U.C. Davis library, as 
I’ve not been able to let them go.  
 
ERG Professor Emeritus Dick Norgaard opened my eyes to climate change and the social factors 
contributing to its causes and potential solutions, and for that I will be forever grateful. Professor 
Isha Ray generously acted as instructor of record and esteemed advisor for the course, Behavior 
and Sustainability, that my colleague Joe Kantenbacher and I ran for three semesters. Professor 
John Harte provided important insights on the econometric analysis in Chapter four. Other ERG 
core faculty provided guidance and insights along the way, including Gene Rocklin, Duncan 
Callaway and the late Alex Farrell.  
 
The members of the ERG family and friends are too numerous to name, but I can not fail to 
thank the amazing ERG staff, past and present, for their constant support, especially Kay Burns, 
Sandra Dovali, Lee Borrowman and Donna Bridges. Importantly, a team of talented graduate 
students, staff and interns has supported the CoolClimate Network over the years, including: Mia 
Yamauchi, Betsy Phillips, Sophia Aston, Kamini Iyer (GIS maps in chapter 4), Josiah Johnston, 
Monica Testa, Jan Porvaznik, Robert Mehra, Rebekah Shirley, Anders Nilsson, Joseph 
Kantenbacher, Gang He, Hazel Onsrud, Won Young Park, Kate Foreman, Sally Maki Michael 
Hajjar, Anita Milman, Jeremy Eddy, and two core student programmers, Jason Khoe 
(CoolCalifornia Challenge) and Kamyar Kaviani (CoolClimate Calculator), plus a long list of 
undergraduate programmers and interns too lengthy to name.  
 
The California Air Resources Board provided financial support for this research (contracts 07-
344 and 10-325). I am very grateful to Bart Croes, Annmarie Rodgers, Annalisa Schilla and 
Tabetha Willmon for expertly managing these contracts and supporting the work as it has 
evolved. I would also like to thank the California Institute for Energy and Environment for 
financial support as co-convener of the Behavior, Energy and Climate Change Conference that I 
have had the privilege to co-chair for the past four years. The Berkeley Institute of the 
Environment (special thanks to Dan McGrath) and the Berkeley Energy and Climate Institute 
provided seed money contributing to this work.   
 
Finally, I am eternally grateful to my wife, Eva. Her support has been immeasurable. I hereby 
confer upon her title of “Coolest California Wife.”



   1 

Chapter 1: Introduction 
 

1.1. Motivation 
 
Climate change is a massive moral dilemma. Humanity has already warmed the planet to the 
point where natural disasters are more common and destructive, and people are suffering and 
dying as a result. This is just the beginning. The speed and scale of suffering will only increase in 
coming decades. Ecosystems are increasingly disrupted, or disappearing entirely, and those who 
are the least responsible for the problem are the least likely to be able to adapt these changes, and 
the most likely to suffer the consequences.  
 
From a moral perspective we clearly do not have the right to cause the suffering of others. Yet 
virtually everything we do, and every dollar we spend, adds more greenhouse gases to the 
atmosphere, exacerbating climate change and its consequences. As young people get older the 
demands of career and family tend to push their carbon footprints higher and lock them into 
lifestyles that are often very difficult to change. Hence, the moral dilemma. How can we live 
productive lives while minimizing our contribution to this very real threat to human wellbeing?  
 
There are alternatives. The average European carbon footprint is less than one half that of the 
average American’s (Roelich et al. 2014) and a few hundred dollars could purchase enough 
carbon offsets to essentially eliminate the rest. Many American households live at or below the 
European average already (Weber and Matthews 2008), even at higher income levels, which tend 
to correlate strongly with carbon footprints.   
 
Solutions are possible, but change is slow. The European case is the result of decades of top 
down policy, bottom-up lifestyle changes and “middle out” innovations in technology that help 
enable lower carbon lifestyles. But what works well in European countries may not be at all 
appropriate or feasible in the U.S. or China, Ghana or elsewhere. A large and diverse range of 
solutions is urgently needed for heterogeneous populations, businesses, communities and 
governments, with vastly different mitigation opportunities, motivations, barriers, priorities and 
capacity to make change. 
 
Until virtually all energy is produced from renewable sources and remaining emissions are safely 
sequestered back into the earth, there will be a need to scale up tailored solutions to diverse 
populations. 
 

1.2. Goals 
 
The purpose of my research is to improve the decision-making capacity of individuals, 
organizations and local governments interested in reducing their contributions to climate change, 
and to explore ways of motivating those who are less motivated. This dissertation incorporates 
lessons from over a decade of research, software development, program development, teaching 
and outreach at the CoolClimate Network, a division of the Renewable and Appropriate 
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Laboratory at U.C. Berkeley. Each of these areas of work informs and supports the others and 
contributes toward the projects’ goals. This dissertation focuses on three interrelated projects that 
explore the use of information technology to help enable the adoption of low carbon solutions for 
U.S. households and communities. In particular, I examine the following questions: 
 

1. What	
  are	
  the	
  primary	
  drivers	
  of	
  U.S.	
  household	
  carbon	
  footprints?	
  
2. How	
  do	
  U.S.	
  household	
  carbon	
  footprints	
  vary	
  at	
  different	
  spatial	
  scales	
  (zip	
  codes,	
  

cities,	
  counties,	
  metropolitan,	
  state,	
  regional	
  scales)?	
  
3. How	
  do	
  GHG	
  reduction	
  opportunities	
  vary	
  by	
  location	
  and	
  demographic	
  

characteristics?	
  
4. What	
  is	
  the	
  effect	
  of	
  population	
  density	
  on	
  U.S.	
  household	
  carbon	
  footprints	
  at	
  

different	
  geospatial	
  scales?	
  	
  
5. What	
  is	
  the	
  potential	
  of	
  an	
  inter-­‐city	
  carbon	
  footprint	
  reduction	
  competition	
  to	
  

reduce	
  household	
  carbon	
  footprints?	
  What	
  motivates	
  participants	
  with	
  different	
  
demographic	
  and	
  political	
  orientations?	
  Who	
  performs	
  better?	
  What	
  lessons	
  can	
  
help	
  inform	
  the	
  development	
  of	
  future	
  similar	
  programs?	
  

 

1.3. Contributions 
 
This dissertation makes the following contributions to academic literature:  
 

1. I	
  characterize	
  typical	
  household	
  carbon	
  footprints	
  and	
  GHG	
  mitigation	
  opportunities	
  
for	
  different	
  household	
  types	
  by	
  location,	
  household	
  size	
  and	
  income.	
  Previous	
  
studies	
  have	
  quantified	
  greenhouse	
  gas	
  (GHG)	
  emission	
  reduction	
  potentials	
  of	
  U.S.	
  
households,	
  e.g.,	
  Dietz	
  et	
  al.	
  (2009)	
  and	
  Laitner	
  and	
  Ehrhardt-­‐Martinez	
  (2009).	
  This	
  
is	
  the	
  first	
  study	
  to	
  quantify	
  GHG	
  savings	
  potential	
  in	
  different	
  U.S.	
  cities	
  and	
  
household	
  types	
  within	
  cities.	
  Large	
  differences	
  between	
  household	
  types	
  highlights	
  
the	
  need	
  for	
  tailored	
  GHG	
  mitigation	
  policies	
  and	
  programs.	
  The	
  carbon	
  footprint	
  
management	
  software	
  developed	
  to	
  accompany	
  this	
  research	
  is	
  designed	
  to	
  aid	
  in	
  
this	
  effort,	
  and	
  indeed	
  is	
  widely	
  used	
  for	
  research,	
  teaching	
  and	
  program	
  
development.	
  	
  

2. I	
  examine	
  the	
  primary	
  drivers	
  of	
  household	
  carbon	
  footprints.	
  Of	
  the	
  37	
  
independent	
  variables	
  in	
  the	
  multivariate	
  regression	
  model,	
  6	
  explain	
  93%	
  of	
  the	
  
variation.	
  I	
  argue	
  that	
  the	
  location	
  of	
  homes	
  and	
  the	
  size	
  of	
  homes	
  are	
  two	
  critical	
  
levels	
  for	
  policymakers	
  to	
  control	
  greenhouse	
  gas	
  emissions.	
  

3. I	
  analyze	
  the	
  effect	
  of	
  population	
  density	
  on	
  household	
  carbon	
  footprints	
  at	
  high	
  
spatial	
  resolution	
  for	
  all	
  U.S.	
  locations.	
  This	
  is	
  the	
  first	
  analysis	
  of	
  average	
  household	
  
carbon	
  footprints	
  for	
  all	
  U.S.	
  locations,	
  providing	
  insights	
  into	
  which	
  GHG	
  mitigation	
  
opportunities	
  may	
  be	
  more	
  promising	
  for	
  different	
  locations.	
  In	
  particular,	
  I	
  suggest	
  
that	
  population	
  density	
  has	
  very	
  different	
  implications	
  for	
  urban	
  cores,	
  suburbs	
  and	
  
metropolitan	
  regions	
  as	
  a	
  whole.	
  	
  	
  

4. Through	
  the	
  design,	
  implementation	
  and	
  evaluation	
  of	
  an	
  inter-­‐city	
  carbon	
  footprint	
  
reduction	
  competition	
  I	
  demonstrate	
  how	
  information	
  technology,	
  combined	
  with	
  
on-­‐the-­‐ground	
  program	
  development,	
  can	
  help	
  scale	
  up	
  GHG	
  mitigation	
  to	
  diverse	
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populations.	
  This	
  is	
  the	
  first	
  published	
  case	
  study	
  of	
  an	
  inter-­‐community	
  GHG	
  
reduction	
  competition.	
  	
  

5. This	
  research,	
  and	
  accompanying	
  software	
  tools	
  and	
  programs,	
  provides	
  a	
  
framework	
  for	
  individuals	
  and	
  communities	
  to	
  prioritize	
  GHG	
  mitigation	
  
opportunities	
  and	
  stimulate	
  collective	
  climate	
  action.	
  

 
 
 

1.4. Dissertation structure 
 
Chapter 2 develops an argument for the need for place-based solutions by reviewing strengths 
and weaknesses of existing climate policy and urban planning. Chapter 3 quantifies GHG 
reduction opportunities for different household types in 28 U.S. metropolitan areas. This project 
demonstrates the need to tailor GHG mitigation opportunities to different household types and 
locations. Chapter 4 uses national survey data and econometrics to estimate average household 
carbon footprints for every U.S. zip code, city, county and state. The study analyzes the effects 
of population density on household carbon footprints in cities of different size in urban cores, 
suburbs and rural areas. The findings of these first two studies provide detailed information on 
the size and composition of household carbon footprints. This information has been developed 
into “smart” online carbon management tools for households and communities. Yet information 
alone may do little to change behavior. Effective behavior change programs utilize a number of 
techniques to engage, educate, motivate and enable change. Chapter 5 reviews behavior theories 
relevant to the design of energy reduction interventions, with an emphasis on competitions. 
Chapter 6 includes methods, results and conclusions from designing, implementing and 
evaluating the CoolCalifornia Challenge, a competition engaging nearly 2,700 households in 
eight California cities to track and reduce household carbon footprints. This pilot project serves 
to demonstrate the use of information technology to help scale up tailed GHG mitigation 
strategies to diverse populations. Chapter 7 concludes with a summary of major findings and a 
roadmap for future research.  
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Chapter 2. Background  

 

2.1. Overview  
 
The scale of the climate crisis is immense. Essentially every activity that humans take results in 
the release of greenhouse gases to the atmosphere. Our transportation, housing, food, goods and 
services are all powered by fossil fuels and industrial activities that contribute to a warming 
planet. Yet each person, household, business and community is different, with varying 
contributions to emissions as well as opportunities, priorities, abilities and motivations to reduce 
them.  
 
The primary thesis of this dissertation is that highly tailored information, tools and policies are 
needed to scale up the adoption of low carbon technologies and practices to a wide range of 
actors. While international and national market-based policies, regulation and technology 
development clearly need to play the dominant role in climate change mitigation, there are limits 
to their effectiveness without simultaneously driving consumer demand for solutions. There is a 
need for a more nuanced, place-based application of planning, policy and behavioral approaches 
that consider the unique characteristics of populations and locations. Communities play a key 
role in scaling up decentralized decision-making since cultural, demographic, attitudinal, 
geographic and political contexts are more similar at fine geographic scales, and social 
interactions play an important role in motivating sustainable behavior (Jackson 2004) (Stern 
2000). 
 
This chapter develops a theoretical basis for work in chapters three and four. It explores research 
on the scale of the climate crisis, the necessity and potential limitations of centralized 
policymaking, and the roles of local climate action planning and decision-making. Considered 
together, this work suggests the need for smart planning and decision-making tools and highly 
tailored, place-based policies. The research developed in chapters three and four has led to the 
development of “smart” GHG management software for households and communities. These 
tools provide comparative feedback and can help communities prioritize and quantify 
opportunities to reduce GHG impacts. Yet information tools are clearly insufficient to help 
massively scale up the adoption of low carbon technologies and practices. There is a need to 
understand the drivers of human behavior and to design, test and implement programs to directly 
engage households in climate action at sufficient scale. Chapter 5 reviews relevant behavioral 
theories that informed the design of a pilot GHG reduction program in eight communities across 
California.  
 

2.2. The scale of the climate crisis 
 
The 2014 IPCC assessment report, AR5 (Intergovernmental Panel on Climate Change 2014), 
estimates that global GHG emissions need to be reduced between 41% and 72% from 2010 
levels by 2050 to be likely to keep warming under 2 degrees C (Edenhofer et al. 2014) and 
emissions need to be virtually eliminated by the end of the century. Key risks with large 
magnitude, high probability and/or irreversible impacts include: mortality and morbidity from 
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extreme heat, breakdown of food production systems and subsequent food insecurity, decreasing 
availability of water, loss of marine ecosystem services, and inland flooding with severe risks to 
human health and livelihoods (Field et al. 2014), among other risks. Losses of human life and 
wellbeing will be greater for the poor, who are the least responsible for the problem, making this 
a massive global moral dilemma and social injustice.  
 
Developed countries, led initially by the G-8 and the European Union have set reduction targets 
at 80% below 1990 levels by 2050. Such reduction would do much to correct the climate 
injustice and slow the pace of warming; however, there is no binding obligation to meet the 
targets. In the case of the United States, there has been a strong lack of political will to enact 
climate legislation and no clear roadmap to successfully achieve targets. Recent executive 
actions by the Obama Administration to limit emissions from power plants and motor vehicles 
are promising, but potentially reversible and insufficient to meet deep reduction targets.   
 
Given lack of federal leadership, states and municipal governments have taken it upon 
themselves to curb emissions from the bottom-up (Wheeler 2008). For example, the state of 
California adopted the 80% reduction target under Executive Order S-3-05, signed by Governor 
Schwartzenneger in 2008. Several recent studies (Greenblatt 2014; Wei et al. 2013; Williams et 
al. 2012; Long et al. 2011) have developed and analyzed policy and technology scenarios for the 
California to meet these targets and have come to essentially the same conclusion: existing 
technologies and policies, even if fully deployed, are not sufficient to meet the target. Additional 
savings through conservation will be required (e.g., reducing miles driven, changing diets, and 
reducing waste) or else entirely new technologies will needed. Figure 1 shows the scale of 
technologies and practices needed for California to meet its 2050 GHG reduction target, 
reprinted from Wei et al. (2013). This implies massive adoption of low carbon technologies and 
practices by households and businesses throughout California, and policies commensurate with 
the scale of the problem to motivate massive adoption for diverse actors.    
 
 



   6 

 
Figure	
  1.	
  Technology	
  pathway	
  for	
  California	
  to	
  meet	
  80%	
  GHG	
  reduction	
  target	
  by	
  2050	
  (Wei,	
  et	
  al.,	
  2013)	
  

 

2.3. The necessity and potential limitations of centralized climate policies 
 
Aggressive national and subnational policies are necessary for any chance of averting the worst 
consequences of climate change. Yet climate policies currently proposed or even imagined are 
woefully insufficient to address the problem (Wheeler 2012). 
 
Climate change has been described as a “super wicked problem” (Levin et al. 2012) in which 
time is running out, central authority to address the problem is weak, future costs are irrationally 
discounted, and the same actors responsible for the problem are those seeking to provide a 
solution. In such contexts, short-term planning and policy objectives are insufficient to address 
the problem at sufficient scale and speed. Any climate legislation is also subject to future cuts, 
modifications or reversals based on the state of political will, power and maneuvering in 
Washington  (Lazarus 2008; Wheeler 2012). The nature of this problem creates a need for a 
wider range of solutions, including decentralized climate mitigation efforts. 
 
Super wicked problems defy simplistic solutions. Many economists argue that simply 
internalizing the social cost of carbon could essentially solve the climate crisis. For example, 
Metcalf and Weisbach (2009) suggest that “a well-designed carbon tax can capture about 80% of 
U.S. emissions by taxing only a few thousand taxpayers, and almost 90% with a modest 
additional cost.” Another recent unpublished study (Nystrom and Luckow 2014) by an advocacy 
group with a policy agenda to pass the proposal as national legislation, Citizens Climate Lobby, 
suggests a wellhead carbon tax, combined with border adjustments, and redistributing revenue 
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through income taxes could cut GHG emissions by 60%, while increasing welfare for the poor 
and average American households.  
 
There are a number of reasons why these, and similar studies, may overestimate the effect of 
carbon taxes and why carbon taxes may not be an optimal solution. First, the effect of price 
signals, or elasticity of demand, varies considerably from one sector to another and in some 
important sectors, like transportation, fuel price seems to have little effect. Previous U.S. studies 
on the elasticity of demand for gasoline have frequently relied on data from the 1970s and early 
1980s oil crises, which reported an average long term elasticity of demand for gasoline of -0.5 to 
-0.7, i.e., a 1% increase in the price of gasoline would eventually lead to about an 0.6% decline 
in gasoline consumption. These estimates have found their way into GHG mitigation studies at 
the highest level, e.g., AR5 notes the long-term elasticity of demand for transportation fuels is -
0.6 to -.08.  However, evidence from the recent energy price hike calls the data into questions. 
Hughes, Knittle and Sperling (2006) first noted a dramatic shift in the short-term elasticity of 
demand for gasoline. Whereas short-term elasticity of demand was -0.21 to -0.34 for 1975 to 
1980, elasticities were a mere -0.034 to -0.077 from 2001 to 2006. According to Hughes et al., 
low elasticity may be due to a number of factors including consumer preferences, lack of 
substitutes and structural forces. The energy crises were also accompanied by important 
historical and sociological phenomena, e.g., long lines at gas stations and the Iran hostage crisis, 
which did not accompany the recent changes in prices. As a result, in 1980 fuel economy was the 
most important consideration in new car purchases (Sutherland 1991).  
 
Enough time has passed since the doubling of U.S. gasoline prices to take a preliminary look at 
the long-term (or at least medium-term) impact on demand of the change in gasoline prices. 
Figure 2 compares gasoline prices (U.S. Energy Information Administration 2014b) with long 
distance vehicles miles traveled and gasoline consumption per capita from 2002 through 20012 
(U.S. Department of Energy 2014).  Between 2002 and 2007 gasoline prices more than doubled 
and have remained between 1.6x and 2.4x for the last five years; however, vehicle miles traveled 
(VMT) decreased by only about 5%, while fuel consumption decreased by 12%, and both VMT 
and consumption have remained stable for the last five years. This suggests that a doubling of 
fuel prices may only lead to perhaps only a 10% reduction in fuel in the U.S. case, and not the 
60% often assumed in carbon tax studies. 
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Figure	
  2.	
  Gasoline	
  prices	
  (real	
  USD)	
  and	
  long	
  distance	
  vehicle	
  (LDV)	
  miles	
  and	
  fuel	
  consumption	
  per	
  capita	
  

 
The GHG impact of a carbon tax depends on the elasticity of demand for taxed goods and 
services, as well as how tax revenues are used. A common, although misleading, argument 
against carbon taxes is that they are regressive, since the poor pay a larger portion of their 
incomes on fuel. Burtraw et al. (2009) compare a range of mechanisms to return carbon revenues 
back to the economy. Under cap and dividend, with revenues paid to households on a per capita 
basis, they estimate average households in the lowest two income deciles would gain $236 per 
year with a carbon price of $20/tCO2, while average households would pay $132. Returning 
carbon tax revenues to consumers, by any mechanism, would weaken the CO2 savings of the 
policy since the funds would subsequently be spent by consumers on goods and services (the 
rebound effect), and funds would not otherwise be invested in low carbon technologies or 
offsets, as is typical with cap-and-trade mechanisms.    
 
The elasticity of demand for gasoline also suggests that a range of policy options will be needed 
to address climate change. For example, fuel economy standards may be more effective than 
carbon taxes at managing emissions from the transportation sector. Motor vehicles are end use 
consumer goods, similar to energy-consuming appliances, which have been very effectively 
regulated with efficiency standards, saving consumers an estimate $80 billion per year (Meyers 
et al. 2003). Urban planning is also an important mechanisms to lower vehicle miles driven and 
increase efficient vehicle technologies (Burchell et al. 1998). 
 
International scientific consensus is now converging upon the reality that centralized policies, 
including market-based mechanisms, standards, regulation, and technology investments, may be 
insufficient to dramatically slow climate change on their own. In contrast to previous IPCC 
assessment reports, AR5 has a strong emphasis on the critical roles of behavior change, 
widespread adoption of energy efficient technologies and urban planning.  In the Summary for 
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Policymakers, the document most widely read by decision-makers, three of the five mitigation 
areas covered have a strong focus on localized decision-making: 
 

SPM.4.2.1 Cross-sectoral mitigation pathways 
 

Efficiency enhancements and behavioural changes, in order to reduce energy demand 
compared to baseline scenarios without compromising development, are a key mitigation 
strategy in scenarios reaching atmospheric CO2eq concentrations of about 450 or 500 
ppm by 2100. 
 
Behaviour, lifestyle and culture have a considerable influence on energy use and 
associated emissions, with high mitigation potential in some sectors, in particular when 
complementing technological and structural change. 

 
SPM.4.2.3 Energy end-use sectors 

 
Technical and behavioural mitigation measures for all transport modes, plus new 
infrastructure and urban redevelopment investments, could reduce final energy demand 
in 2050 by around 40 % below the baseline. 
 
Lifestyle, culture and behaviour significantly influence energy consumption in buildings. 
A three-to five-fold difference in energy use has been shown for provision of similar 
building-related energy service levels in buildings. For developed countries, scenarios 
indicate that lifestyle and behavioural changes could reduce energy demand by up to 20 
% in the short term and by up to 50 % of present levels by mid-century. 

 
SPM.4.2.5 Human settlements, infrastructure and spatial planning 

 
Infrastructure and urban form are strongly interlinked, and lock-in patterns of land use, 
transport choice, housing, and behaviour. Effective mitigation strategies involve 
packages of mutually reinforcing policies, including co-locating high residential with 
high employment densities, achieving high diversity and integration of land uses, 
increasing accessibility and investing in public transport and other demand management 
measures. 

 
These statements reflect an important shift in the focus of climate policy away from purely 
centralized decision-making toward localized actions that require high levels of information and 
technical capacity across a wide range of stakeholders (households, businesses, local and 
regional governments). In sum, the landscape for GHG mitigation has become more complex, 
requiring information at multiple scales (national, state, regional, local, individual), increased 
technical capacity and efforts to motivate a wide range of actors to adopt low carbon practices.  
 
If decision-making needs to be improved at multiple scales, then better information is also 
required. It is helpful to consider that at any time, and for any entity (household, business, 
government etc.) there exists a set of measures that could be taken to reduce greenhouse gases. 
This concept is most popularly conceived as a greenhouse gas marginal abatement cost (MAC) 
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curve, with total annual GHG savings on the x-axis (e.g., metric tons CO2e-yr) and the annual 
levelized cost per ton of CO2 equivalent conserved on the y-axis ($/tCO2e-yr). The total 
abatement cost (or savings) is simply the sum of the area under the curve. MAC curves have 
traditionally been applied at global scales (Enkvist, Nauclér, and Rosander 2007), nations 
(Morris, Paltsev, and Reilly 2012) or sectors (Moran et al. 2011), but they may also theoretically 
be applied to individuals and organizations. These measures require varying degrees of cost, 
effort, expertise, information and motivation to identify and successfully implement.  
 
In the absence of strong national climate policy, this dissertation seeks to help enable low carbon 
consumption for U.S. households. It builds on work from my 2005 Masters project (Jones 2005), 
which developed the first consumption-based carbon footprint calculator (CoolClimate Network 
2014). The goal of this ongoing project has been to allow individuals and households to calculate 
their complete carbon footprints, compare their results to similar households (comparative 
feedback) and develop personalized climate action plans to reduce their impact and purchase 
carbon offsets to lead carbon neutral lifestyles. The project has evolved into an ecosystem of 
GHG management tools, programs and supporting research (“CoolClimate Network” n.d.).  
 

2.4. Local climate action planning  
 
Local greenhouse gas inventories and climate action plans (CAPs) have been the focus of 
increasing attention. A study by Wheeler (2008) of early CAPs highlighted the shortcomings of 
state and municipal plans and recommended five steps to improve the effectiveness of local 
climate action planning: 1) choosing stronger GHG reduction targets, 2) using a long-term 
planning framework to achieve targets, 3) including a full range of measures, 4) implementing 
plans more effectively, and 5) engaging in social marketing and educational efforts. These steps 
are highly consistent with work developed for this dissertation and complimentary work to 
develop a smart planning tool for community-scale greenhouse gas mitigation planning. Another 
somewhat more recent analysis of CAPs (Bassett and Shandas 2010) similarly concludes that 
there exists a wide range of formats, purposes and analysis in these reports. The most detailed 
plans with targets and implementation strategies include standard approaches in urban planning, 
e.g., public transit, energy codes and compact urban design. There is little evidence that CAPS 
include social marketing approaches, although some do mention the need for educational efforts.  
 
One of the critical aspects of measurement and targets is the boundary selected for the approach, 
i.e., what emissions are included and excluded in the analysis. Several studies by Ramaswami 
and colleagues (Chavez and Ramaswami 2011; Hillman and Ramaswami 2010; Ramaswami et 
al. 2011) have analyzed different community-scale GHG inventory methodologies, including 
traditional production-based approaches, hybrid methods and consumption-based approaches. 
Each methodology provides a different lens by which cities may view, prioritize and implement 
GHG mitigation strategies. The consumption-based approach in ICLEI’s U.S. Community 
Protocol for Accounting and Reporting Greenhouse Gas Emissions (“ICLEI USA” n.d.) was 
developed in collaboration with this dissertation research and includes the methods outlined in 
chapters three and four of this dissertation.  
 
Consumption-based GHG accounting (Hertwich and Peters 2009; Weber and Matthews 2008; 
Wier et al. 2001) allocates all emissions to final demand, which includes households, 
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governments and capital investments, accounting for 77%, 8% and 15% of U.S. emissions, 
respectively (Roelich et al. 2014). Roughly 80% of GHG emissions associated with final demand 
are from domestic production in the U.S. (Ghertner and Fripp 2007; Roelich et al. 2014; Weber 
and Matthews 2008) while remaining emissions are embodied in imported goods. Consumption-
based accounting allocates emissions to final demand, regardless of where emissions physically 
enter the atmosphere. Under this accounting framework, businesses are in service to consumers, 
who drive demand for goods and services and are ultimately responsible for the emissions. 
Production-based accounting methods used by national governments typically ignore emissions 
embodied in trade. In some countries, such as Belgium and Norway, over 50% of emission are 
embodied in trade (Hertwich and Peters 2009), thus production-based accounting methods ignore 
the crucial role that consumption plays in the production of greenhouse gas emissions globally.   
 
Community consumption-based GHG accounting methods typically do not consider the 
contribution of local businesses to GHG emissions since they are part of production systems 
supplying goods and services to consumers. It is becoming increasingly common practice, 
however, to account for complete supply chain emissions of enterprises using methods similar to 
household consumption (Huang, Weber, and Matthews 2009). Including life cycle emissions of 
households and businesses in community GHG inventories will lead to double counting, unless 
subtracted, since a portion of local consumption will be from local production. Combining 
households and business activities into a single approach is often referred to as urban 
metabolism, accounting for life cycle environmental impacts of all materials consumed within a 
community’s borders (Kennedy, Pincetl, and Bunje 2011). A smart GHG decision-support tool 
developed for the California Air Resources Board (contract 09-359) uses the urban metabolism 
approach to identify GHG hotspots and the cost of mitigation measures for all California cities 
(Jones and Kammen 2012).  
 
Ultimately what is needed is a transformation of systems of production and consumption (Tukker 
et al. 2010a). In 2009 a U.N. panel on Sustainable Resources Management was convened to 
determine “how different economic activities influence the uses of natural resources and 
generation of pollution” (UNEP 2010). The report identifies consumption as the primary driving 
force, with fossil fuels and agriculture generating the most impacts on natural systems; however, 
there is considerable variation by country and region.  For example, agriculture is the largest 
source of GHG emissions in most developing countries, while transportation is the single largest 
source in the United States. These differences point to the importance of differentiated GHG 
mitigation policies in each country. Chapters 3 and 4 of this dissertation explore in detail the 
extent to which GHG emissions and mitigation opportunities vary by locations within the United 
States. The assumption is that  “smart” information tools that consider local demographic, 
economic, climatic and infrastructure characteristics of communities may help prioritize GHG 
reduction policies and practices for diverse actors.  
 

2.5. Urban and regional planning for climate mitigation 
 
Roughly 80% of the U.S. population lives in metropolitan areas, and about fifty percent live in 
suburbs (Jones and Kammen 2014). Suburbanization of American housing has been blamed with 
a long list of negative social, economic and environmental impacts. Low densities have 
decreased social interactions among residents, led to congestion and accidents, and increased the 
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cost of providing infrastructure services, while longer traveling distances and larger homes 
increase environmental impacts, notably the emission of greenhouse gases. Several different 
schools of urban planning have attempted to address American sprawl.  
 
Smart Growth grew directly out of a reaction to the negative social and environmental impacts of 
suburban sprawl (Ewing and Anderson 2008). Smart Growth principles emphasize a wide range 
of strategies, including compact design, preservation of open spaces, mixed land uses, grid street 
layouts, public transit, charging public costs to new development and revitalization of existing 
neighborhoods, among others (Burchell, Listokin, and Galley 2000; Downs 2005; Ewing et al. 
1998). In practice, Smart Growth is discussed far more than it is successfully implemented due to 
a large number of barriers, including shifting power from local to regional authorities, 
redistributing benefits and costs to local actors, aversion to multi-family or low-income housing, 
raising home prices, increased traffic, complex permitting, and limits to individual choice, 
among others (Downs 2005). An even stronger limitation, in terms of climate change, is 
effectively addressing the existing housing stock. Revitalization tends to focus on improving 
urban cores to increase livability and density of low income neighborhoods (Downs 2005), 
leading, in theory, to a virtuous cycle of increasing social, economic and environmental 
outcomes (Cervero 2005). Smart Growth has far fewer tools to deal with existing suburban 
sprawl, where 50% of the U.S. population currently lives, and where the majority of residential 
carbon footprints will continue to exist into the future.  
 
Transit-oriented development (TOD), a subset of smart growth strategies, has similarly yet to 
have a significant impact on American urban development. TOD is understood as high- or 
medium-density mixed use development located within walking distance of a major transit stop. 
TOD tends to focus on development around urban rail systems. A California study found that 
residents living near rail systems were five times as likely to commute by rail than average 
resident workers in the same city (Lund, Cervero, and Wilson 2004). While urban rail systems 
tend to support transit usage, their impact is still quite small on the urban landscape, with only 
roughly 5% of the U.S. workforce commuting by any public transit mode (Santos et al. 2011).  
 
New Urbanism emerged in the early 1990s specifically to improve the social, economic and 
environmental outcomes of suburban development through integration of design elements 
common to traditional towns. Major design elements include a mix of residential and commercial 
spaces, highly walkable streets and integration of public transit systems (Fulton 1996). 
Architecture and street designs encourage social interactions, with front porches, garages behind 
homes, narrower streets and shared public spaces (Wheeler 2013). In contrast to smart growth, 
which emphasizes compact development and limiting suburbanization, New Urbanism tries to 
improve suburban development rather than restrict it. This is a promising development, and 
consistent with a place-based solutions approach, but it is also restricted in its ability to 
effectively deal with existing low density, car-dependent residential neighborhoods.   
 
Another neighborhood-based design principle gaining momentum is zero net energy buildings 
(ZNEB) and developments. A ZNEB, or simply ZEB, is a residential or commercial building that 
meets its energy requirement with renewable energy. There are a number of competing 
definitions of net zero energy buildings (Pless and Torcellini 2010). Common to these definitions 
is the ability of buildings to be connected to the grid in order to use the grid as storage of on-site 
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renewable energy. This has been shown to be environmentally beneficial compared to 
disconnected homes that produce and store all energy on site (Hernandez and Kenny 2010). In 
California, ZEBs have limited impact since household electricity and natural gas account for 
only roughly 10% of total household carbon footprints (Jones and Kammen 2014). When 
considering the full life cycle carbon footprints of residents, zero net energy communities are an 
improvement, but fall far short of meeting per capita climate stabilizations requirements. The 
widely discussed Beddington Zero Energy Development (BedZED) in the UK, for example, has 
been shown to have a lower carbon footprint than typical UK developments, but still requires 11 
tCO2e/yr per capita, or almost three times the global average, and nearly ten times what is 
required for climate stabilization, considered on a life cycle basis (Chance 2009).  
 
Urban planning certainly plays an important role in greenhouse gas management. It is arguably 
the lack of effective urban and regional planning that has led to increasing consumption and 
GHG emissions in the United States over the last half-century. At the same time, there are 
countless examples of effective application of smart growth principles, climate action plan 
implementation and policy development to change local and regional drivers of GHG emissions 
(R. H. Ewing and Anderson 2008). If smart growth planning principles are to be more broadly 
applied it may be useful to consider under what conditions those principles are more or less 
effective. There appears to be a tendency for planning to rely on universal design principles that 
may not be appropriate for all locations. For example, while high-density urban cores clearly 
have lower GHG emissions than low-density suburbs (Cervero and Murakami 2010; Ewing and 
Cervero 2001a) this does not mean that marginal changes at low densities (i.e., putting more 
homes in distant locations) will produce a net reduction in emissions. Ultimately we need to 
transform household consumption in the existing housing stock if we are to address climate 
change at an appropriate scale, with planning and community-scale GHG management playing 
important roles.  
 
 

2.6. The promise of place-based greenhouse gas management  
 
Addressing climate change at sufficient scale will require massive adoption of low carbon 
technologies and practices in the coming decades. A large part of this transition must come from 
centralized planning, including market and regulatory approaches to limit emissions from power 
plants, motor vehicles, industry and agriculture, as well as increasing energy efficiency of 
buildings and end-use appliances. However, even if fully implemented at the national scale 
(which will almost certainly not happen), there is still a need for “bottom-up” or “multi-level 
governance” (Betsill and Bulkeley 2006) to speed up the adoption of low-carbon solutions. 
Urban planning and behavioral approaches have the potential advantage of achieving results 
more quickly than centralized policy measure that often take decades to reach their full effect. 
 
Information deficit is one of the most commonly cited market failures preventing wider adoption 
of energy efficiency (Brown 2001; Golove and Eto 1996; Sutherland 1991). Smart planning tools 
that quickly identify cost-saving measures for households, businesses and local governments 
could reduce information barriers and transaction costs associated with acquiring such 
information. In practice though, information on pecuniary information has been shown to 
increase consumption of energy rather than decrease it (Delmas, Fischlein, and Asensio 2013). 
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At the same time, particular types of information tend to increase efficiency. For example, 
comparative feedback and tailored energy audits were shown to achieve substantial savings 
(11.5% and 13.5% respectively) in the same study.    
 
Smart planning tools have the potential to scale up information-based social marketing efforts to 
large audiences. The approaches in this dissertation provide tailored, comparative feedback for 
households and communities in any U.S. location, a ranked list of GHG mitigation strategies and 
an inter-community GHG reduction competition that holds potential to scale up climate action 
within and between California communities. This research also seeks to aid in long-term, cross-
jurisdictional planning efforts, that lead to broad cultural, as well as technological change, as 
advocated by Wheeler (2013, 2012, 2008)  and others. Information that is tailored to each 
location can help planners choose from among a wide range of policy, planning and behavioral 
strategies that consider local population characteristics. 
 
The next two chapters develop methods to quantify greenhouse gas profiles and reduction 
opportunities for U.S. households and communities. The results of this research are the 
foundation of online decision-support tools developed in collaboration with this research. 
Information tools alone may be necessary, but are far insufficient to enable large-scale change. 
Individuals also need to have sufficient motivation, capacity and self-efficacy, i.e., belief in their 
ability to make a meaningful contribution to solve the problem (Bandura 1977; Jackson 2004; 
McKenzie-Mohr and Schultz 2014). Chapters 5 explores these themes in more detail and Chapter 
6 develops a pilot program to scale up meaningful climate action among California residents.  
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Chapter 3: Quantifying Carbon Footprint Reduction Opportunities of U.S. Households 
and Communities1 
 

3.1. Introduction 
 
Voluntary greenhouse gas (GHG) management programs and policies directed at individuals, 
households, and communities serve as compliments to national and state-level policies directed 
at heavy industrial emitters (Peters 2008; Ramaswami et al. 2008). Recently there has been a 
marked increase in information campaigns promoting lower-carbon lifestyles choices, 
community-based social marketing programs (McKenzie-Mohr 2013), voluntary carbon offsets 
programs (Anja Kollmuss, Zink, and Polycarp 2008), and the proliferation of online household 
carbon footprint calculators (Kim and Neff 2009) aimed at reducing emissions related to 
individual lifestyles. Several recent studies suggest that voluntary consumer-oriented programs 
can reduce household carbon footprints by 5-20% (Dietz et al. 2009; Laitner and Ehrhardt-
Martinez 2009; Vandenbergh, Barkenbus, and Gilligan 2008). However, individuals and program 
developers need information on the relative contribution of different household activities to 
household carbon footprints as well as and the financial and GHG benefits of different household 
mitigation strategies. 
 
In the United States, GHG emissions associated with household consumption have been 
estimated to account for over 80% of total U.S. emissions and upward of 120% if emissions 
embodied in imports are adjusted for the carbon-intensity of production (Hertwich and Peters 
2009; Weber and Matthews 2008). An increasing number of studies have further analyzed the 
size, composition, and the demographic or geographic distribution of household carbon 
footprints at global, national, and regional scales (Hertwich 2005; Tukker et al. 2010b; 
Wiedmann 2009). While modeling techniques have become increasingly sophisticated, this 
research has not been translated into comprehensive carbon management tools available to 
households, communities, and small businesses to monitor and quantify emission reduction 
opportunities. Instead, relevant information available to individuals has been quite general in 
nature, such as providing lists of tips to reduce carbon footprints, or so-called carbon footprint 
calculators that only consider a limited portion of total household carbon footprints (Matthews, 
Hendrickson, and Weber 2008). 
 
This chapter presents a consumption-based accounting model of U.S. household consumption, 
including GHG emissions released during the extraction, processing, transport, use and disposal 
phases of household transportation, energy, water, waste, food, goods, and services. 
Consumption-based accounting provides a comprehensive assessment of emissions related to 
individual consumer choices (Weber and Matthews 2008) and is well suited for the development 
of consumer-oriented carbon management tools (Wier et al. 2001). Carbon footprints are 
calculated for households in 28 cities across 6 household sizes and 12 income brackets for a total 

                                                
1 Reproduced with permission from: Jones, Christopher M., and Daniel M. Kammen. 2011. “Quantifying Carbon 
Footprint Reduction Opportunities for U.S. Households and Communities.” Environmental Science & Technology 
45(9): 4088–95. Copyright 2011 American Chemical Society.  
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of over 2000 different household types. Greenhouse gas and financial savings are further 
quantified for a set of 13 potential mitigation actions across all household types. By applying the 
same basket of interventions across households with very different carbon profiles we 
demonstrate the utility of targeting policies and programs to specific geographic and 
demographic population segments. The results of this model have been incorporated into open 
access online carbon footprint management tools designed to enable behavior change at the 
household level in California (“Cool California” n.d.)  and across the United States 
(“CoolClimate Network” n.d.) by providing personalized feedback to users on their carbon 
footprints. 
 

3.2. Methods 
 
The total household carbon footprint, HCF, of any individual or population can be expressed 
simply as the product of consumption, C, in dollars or physical units, and emissions per unit of 
consumption, E, summed over each emissions activity (i) included in the model:  
 
HCF= Σ CiEi  (1) 
 
Total annual household consumption, C, for each household type by location, household size, 
and income is calculated as:  
 
C = Σ [Cmsa, i  *  Ct,i / Cusa,i] (2)  
 
where Cmsa,i is the average household consumption, in dollars, in each metropolitan statistical area 
(msa) in the Consumer Expenditures Survey (CEX) (Bureau of Labor Statistics 2008) of each 
expenditures category (i), Ct,I is the average household expenditures by each household type (t, 
by size and income) in the CEX, and Cusa,i is the average U.S. household consumption, in dollars 
or physical units. Average U.S. default consumption values, Cusa,i, for the year 2005 are from the 
Bureau of Transportation Statistics (Bureau of Transportation Statistics 2002) for transportation 
(in vehicle miles and passenger miles for public transit modes), the Energy Information Agency 
(U.S. Energy Information Administration 2014a) for household energy (in physical energy units) 
at the level of U.S. states, and the Bureau of Economic Analysis (Bureau of Economic Analysis 
2002b) (BEA) for food, goods, and services. BEA expenditures on 589 unique products were 
then matched with 8 categories of food, 7 categories of goods, and 10 categories of services in 
the CEX. A detailed version of the CEX (with ~1500 categories in total) was obtained from the 
Bureau of Labor Statistics (2006) in order to separate goods from services where these categories 
were combined in the CEX summary tables.  
 
In eq 2 above, the CEX is used to scale average consumption in each major metropolitan 
statistical region by average consumption of each household type, by size and income, compared 
to U.S. average consumption. Location, income, and household size have been reported 
elsewhere to be the largest determining factors of household environmental impacts (Lenzen 
1998; Wier et al. 2001). The total number of households in the United States in 2005 was roughly 
118M, with 2.5 persons per household, on average. Expenditures for income brackets between 
$70,000 and $120,000 were interpolated linearly. Expenditures for cities are for the combined 
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year 2005-2006 for 17 of the 28 cities, and for the next earliest year date are available in the 
CEX for other cities, adjusted to 2005 USD using the Consumer Price Index. The model uses 
state average electricity and home heating fuel consumption and prices (Bureau of Labor 
Statistics 2006). Correction factors are applied to account for price differences of food, goods, 
and services in each MSA using the ACCRA Cost of Living Index (C2ER 2014). 
 
 

3.2.1. Detailed methods of benchmark carbon footprint model 
 

3.2.1.1.	
  Motor	
  Vehicles	
  

 
Emissions from motor vehicles include: 1) direct tailpipe emissions from fuel combustion in 
vehicles, 2) indirect “well-to-pump” emissions from the pre-consumer life cycle of fuels, 3) 
vehicle manufacturing, and 4) vehicle maintenance and repairs (including parts and services).  
Government-related indirect emissions from road construction and maintenance, policing, and 
other activities are currently not included in the model.  

 
Direct tailpipe emissions 
 
The average U.S. household drove 21,200 vehicle miles in 2001 (Bureau of Transportation 
Statistics 2002), the latest year national average household vehicles miles traveled are available 
at the time of model construction. The weighted fuel economy of the U.S. vehicle fleet is about 
20 miles per gallon (Davis, Diegel, and Boundy 2003). Combustion of a gallon of gasoline 
produces 8,874 gCO2 and diesel produces 10,153 gCO2 (Energy Information Administration 
2014). For benchmarking purposes, all vehicles are initially assumed to be gasoline since diesel 
vehicles account for only a small fraction of the U.S. vehicle fleet, although users of the online 
tool (CoolClimate Network 2014) can further specify gasoline or diesel fuel type. Other vehicle 
fuels (e.g., biofuels and electricity) are currently not included in the model. Direct emissions for 
the average U.S. household (with 2.5 persons) are calculated as: 21,200 miles / 20 mpg * 8,874 
gCO2/gallon = 11.9 mtCO2e/yr. 
 
The calculator populates default values for the average number of vehicles and average miles per 
vehicle for each household type (using equation 2). The default number of vehicles per 
household is given by the Consumer Expenditures Survey (Bureau of Labor Statistics 2006) and 
is rounded to the nearest whole number. Vehicle miles traveled are distributed per vehicle using 
the National Household Travel Survey (Bureau of Transportation Statistics 2002):   
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Table	
  1.	
  Allocation	
  of	
  vehicle	
  miles	
  per	
  number	
  of	
  vehicles	
  owned	
  by	
  households	
  

 
 

Indirect “well-to-pump” emissions 
 
Estimating emissions from the full life cycle of transportation fuels (from “well-to-wheels”) has 
become increasingly important aspect of transportation policy. In order to compare emissions 
from disparate transportation energy sources, such as biofuels, natural gas and electricity, a life 
cycle assessment (LCA) approach is required. California’s “Low Carbon Fuel Standard” (LCFS) 
mandates life cycle accounting in an effort to increase the use low carbon transportation fuels in 
the State. The LCFS policy analysis report of 2007 (Farrell and Sperling 2007) identifies 20% as 
a typical value of well-to-pump emissions for gasoline, citing the GREET (Environmental 
Protection Agency 2013) model in its technical report (Farrell and Sperling 2007). Well-to-pump 
(WTP) gasoline emissions in GREET are 26% of tailpipe emissions (or roughly 20% of well-to-
wheel emissions), while diesel WTP emissions are 23% of direct emissions. Delucci’s (2006) 
estimate of 20,778 gCO2e/106 btu for pre-combustion gasoline emissions equates to 29% of 
direct emissions. EIO-LCA (Green Design Institute, C.M.U. n.d.) produces a more conservative 
estimate of about 14%. Horvath (Horvath 2006) and other studies have previously assumed a 
value closer to this lower estimate (Granovskii, Dincer, and Rosen 2006; Spielmann and Scholz 
2005). The LCFS program in California is currently developing default well-to-wheels emission 
factors for transportation fuels, and a similar effort has been proposed at the national level. Until 
standard default values are determined by state or national policy directives, we have chosen the 
GREET model as the most representative emission factors for well-to-pump emissions.  

  
Vehicle manufacturing 
 
EIO-LCA is used to approximate emissions from motor vehicle manufacturing. The average 
retail price of a domestic automobile was $17,907 (Davis, Diegel, and Boundy 2003) in 1997. 
The average producer price was 80% of the retail price (Bureau of Economic Analysis 2002b), or 
$14,326. Applying the 1997 EIO-LCA emission factor of 628 gCO2e/$ for the “Automobile and 
light truck manufacturing sector” in EIO-LCA results in 9.0 mtCO2e per vehicle. This estimate is 
consistent with process-based LCA studies, which include the most significant emissions from 
vehicle manufacturing, but exclude economy-wide impacts further up the supply chain. 
Published studies include estimates of 4.4 mtCO2e for a Volkswagen Golf (Schweimer and Levin 
2000), 8-9 mtCO2e for Ford Galaxy and S-Max models (Schmidt 2006), 9-10 mtCO2e for 
Mercedes S Class models (Finkbeiner and Hoffmann 2006) and 6.8 mtCO2e from vehicle 
components and assembly over the lifetime of a typical vehicle in the GREET (Environmental 
Protection Agency 2013) model.  
 

% miles per year per number of vehicles

1              2              3              
first vehicle 100% 55% 41%

second vehicle 0% 45% 35%
third vehicle 0% 0% 24%

source: NHTS, 2006

# of vehicles in household
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Allocating emissions from motor vehicles, as with other consumer goods with long life spans, 
presents challenges to carbon footprint calculator designers. Should upstream emissions from the 
production of vehicles be allocated at the time of purchase, or over the lifetime of the vehicle? 
When a vehicle is sold, what portion of manufacturing emissions should be allocated to the new 
owner? Allocating emissions at the time of purchase produces a disincentive to purchase new, 
and potentially more fuel-efficient vehicles. If, on the other hand, emissions are allocated over 
the lifetime of vehicles on a per-mile-basis, there is no incentive to reduce the very significant 
emissions from vehicle manufacturing.  
 
Table 2 provides an example of the effect of different assumptions for embodied motor vehicle 
emissions. Increasing fuel efficiency from 25 to 40 mpg for a vehicle driven 10,000/yr reduces 
well-to-wheel GHG emissions by ~1.6 mtCO2e/yr (1.3 direct plus 0.3 well-to-pump) or 16 
mtCO2e over 10 years. If 9 mtCO2e of manufacturing emissions are allocated at the time new 
vehicles are purchased, then it would take nearly 6 years for this action to result net GHG 
savings. Purchasing a new fuel-efficient vehicle every 3 years would result in net negative 
savings (additional emissions) of 11 mtCO2e over 10 years with no manufacturing emissions 
passed on to the future owners of these vehicles. If, on the other hand, embodied emissions are 
allocated on a per mile basis, then driving a 40 mpg vehicle would result in lifecycle savings of 
10 mtCO2e over 10 years, regardless of how many new or used vehicles are purchased over this 
period.  Thus, from one perspective regularly purchasing new fuel-efficient vehicles reduces net 
GHG emissions, while from the other perspective net emissions are increased.  
 
Table	
  2.	
  Allocating	
  vehicle	
  manufacturing	
  emissions	
  at	
  time	
  of	
  purchase	
  or	
  on	
  a	
  per	
  mile	
  basis	
  

 
 

Another, seemingly more reasonable, approach would be to allocate emissions based on 
depreciation of vehicles on an annual basis. This would allocate most of the emissions to the 
early years of a vehicle’s lifetime and fewer emissions toward the end; however, such an 

Effect of purchasing more efficient vehicle under different embodied GHG emissions assumptions
(switching from a 25 mpg to 40 mpg vehicle, driving 100,000 miles in 10 years)
Allocation of manufacturing 
GHG emissions

Frequency new or used 
vehicles purchased

mtCO2e saved in 
fuel consumption

mtCO2e from 
vehicle manufacturing

Net CO2e 
saved

Allocated upfront New every 3 yrs 16 27 -11
Allocated upfront New every 5 yrs 16 18 -2
Allocated upfront New every 10 yrs 16 9 7
Allocated upfront Used every 3 yrs 16 0 16
Allocated upfront Used every 5 yrs 16 0 16
Allocated upfront Used every 10 yrs 16 0 16
Allocated per mile New every 3 yrs 16 6 10
Allocated per mile New every 5 yrs 16 6 10
Allocated per mile New every 10 yrs 16 6 10
Allocated per mile Used every 3 yrs 16 6 10
Allocated per mile Used every 5 yrs 16 6 10
Allocated per mile Used every 10 yrs 16 6 10
Assumptions:
Direct emissions = 8874 gCO2/gallon
Well-to-pump emissions = 20% of direct emissions
Manufacturing emissions = 9 mtCO2e/vehicle
Vehicle lifetime = 160,000 miles



   20 

allocation process is difficult to accomplish in practice and has not been included in the current 
model.   
 
For the current calculator we chose to allocate emissions from vehicle manufacturing on a per 
mile basis for the following reasons: 1) the preferred method of allocation based on vehicle 
deprecation was not feasible, 2) allocating emissions on a per mile basis sends a signal to reduce 
vehicle miles traveled, which is arguably more important than limiting production of motor 
vehicles, and, 3) encouraging the purchase of more fuel efficient vehicles stimulates innovation, 
which can lead to future emission reductions. 

 
Emissions per vehicle mile are calculated as: 

 

 
 

where 160,000 miles is the average expected lifetime of motor vehicles (Environmental 
Protection Agency 2013). 

 
Vehicle maintenance and repairs 
EIO-LCA is used to approximate emissions from motor vehicle maintenance and repairs. See 
Food, Goods and Services discussion below.   

 
 

3.2.1.2.	
  Public	
  Transportation	
  
 
The expense “Public transportation” in the Consumer Expenditures Survey aggregates air travel, 
bus, rail, and other into a single expenditures category, complicating the use of CEX for 
benchmarking purposes for different transport modes. Emissions from public transport were 
determined by 1) converting dollars to passenger miles using a top-down approach, 2) allocating 
miles to different transport modes, 3) multiplying passenger miles by GHG emission factors for 
each mode, 4) scaling emissions based on income, 5) accounting for the higher fraction of air 
travel miles for households at higher incomes.  
 
The Transportation Energy Data Book provides total U.S. passenger miles per transport mode 
(Table 3). The vast majority of passenger miles for non-highway vehicles are for air 
transportation (93%), followed by 3% from Bus, 3% from transit and commuter rail, and 1% for 
long distance rail (Amtrak).  

 

mile
ekgCO

miles
vehicle

vehicle
etCO 256

000,160
*29

=
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Table	
  3.	
  Passenger	
  miles	
  per	
  public	
  transportation	
  mode	
  (2004)	
  

 
 

According to the Transportation Energy Data Book (Davis, Diegel, and Boundy 2003) thirty-one 
percent of all long-distance trips are for business. These emissions are theoretically embodied in 
goods and services so are not included under here. Total average public transportation miles 
(including air travel) are defined as: 

 

 
 

The average US household spent $505 per year on public transportation in 2006, or 9.4 miles per 
dollar. We multiply consumer expenditures by 9.4 and scale total passenger miles for each 
income level and household size. 
 
To calculate benchmark transportation miles for each household type we then calculated the 
fraction of total passenger miles by each major mode of transport using the Transportation 
Energy Data Book, 2007 (Davis, Diegel, and Boundy 2008). Air travel accounted for 93% of 
total passenger miles for all major public transport modes in 2004. Air travel is a normal good; as 
income goes up, so do expenditures on air travel, i.e., showing a positive income elasticity of 
demand. Other public transport modes are inferior goods, with lower demand as income 
increases over middle incomes. Households earning less than $25k per year take more trips by 
bus than by air, while household earning more than $75k per year take nearly 10 times the 
number of long distance trips by air than by bus (Table 4).  
 
Table	
  4.	
  Percent	
  of	
  long	
  distance	
  trips	
  by	
  mode	
  and	
  income	
  

 

Mode
Total US
(millions) Per capita %

Air* 752,341 2,566      93%
Bus 21,262 73           3%
Transit (light&heavy) 15,930 54           2%
Communter rail 9,719 33           1%
Amtrak 5,511 19           1%

Total 2,745      100%
Source: Transportation Energy Data Book, 2007
* includes domestic and international flights

household
miles

household
persons

person
miles 47355.2*%69**2745

=

Mode % $ % $ % $ % $
Air 38% 77$         58% 161$       63% 347$       85% 846$       
Bus 49% 97$         32% 89$         24% 131$       9% 93$         
Train 9% 18$         9% 25$         10% 52$         5% 49$         
Other 4% 8$           2% 4$           4% 20$         1% 12$         
Total 100% 200$       100% 280$       100% 550$       100% 1,000$    

$ per mode is interpolated

$75K+

% source: BTS, 2006. Americans on the go. Table 13. 
Total $ source: Consumer Expenditures Survey, 2006

Less than $25K $25K-$49K $50-$74K
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The final calculation for public transportation is: 
 

etotal

e

mile
eCO

miles
milesmiles

year mod

mod 2**
$
4.9*$

 
 
Emission factors for public transit modes are from the Greenhouse Gas Protocol (Ranganathan et 
al. 2004) which incorporates studies by EPA and other sources (Table 5). These estimates 
assume average occupancy of public transit modes.  
 
Table	
  5.	
  Emission	
  factors	
  for	
  public	
  transit	
  modes	
  

Mode gCO2e/mile 
bus 300  
commuter rail (light & heavy) 165  
transit rail (subway, tram) 160  
Amtrak 191  

Source: Greenhouse Gas Protocol (WRI-WBCSD)  
 

Indirect well-to-pump emissions from transportation fuels are assumed to be 26% of direct 
emissions, as indicated by the GREET model (Environmental Protection Agency 2013). 
 
 

3.2.1.3.	
  Air	
  Travel	
  
 

Air travel results in 1) direct CO2 emissions from fuel combustion, 2) indirect life cycle (“well-
to-pump”) GHG emissions from fuel processing and other indirect emissions from the airline 
industry, and 3) non-CO2 atmospheric effects on global and local temperatures and weather 
patterns. 
 
GHG emissions from consumption have been shown to vary substantially depending on aircraft 
type, flight distance, number of stops, seat occupancy rate and seat class (Kollmuss and Lane 
2008). Few online calculators, however, present this level of customization, presumably due to 
the additional modeling efforts required and the preference to build simple, user-friendly 
interfaces that require less time to complete. DEFRA (2008) is commonly cited as a reference for 
GHG emission factors. This report considers typical flights within the U.K., within the E.U. and 
transatlantic flights. Trip length and emission factors, converted to miles and gCO2 per passenger 
mile, are: 

  
Trip length gCO2/passenger-mile 
288 miles 254 
688 miles 210 
4027 miles 170 
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Shorter flights have higher emission factors due to relatively higher emissions at takeoff and 
landing per passenger-mile. Extrapolating these numbers using a logarithmic curve, and 
assuming typical trip length of ~1200 miles (Department of Transportation 2014a), yields the 
following emissions estimates per given trip length: 

 
Trip length gCO2/passenger-mile 
Number of short flights (<400 mi) 254 
Number of medium flights (400-1500) 204 
Number of long flights (1500-3000) 181 
Number of extended flights (>3000) 172 
Typical flight (1200) 200 

 
Indirect “well-to-pump” emissions are assumed to be 26% of direct emissions, following the 
GREET model (Environmental Protection Agency 2013). Other indirect emissions, e.g., from the 
airline industry, are excluded from this analysis.   
 
Airplanes traveling at high altitude have large, varied and relatively uncertain effects on surface 
temperature. These impacts include warming from 03, H20, soot, contrails and cirrus clouds, and 
cooling effects from breakdown of CH4 and emissions of sulfates and aerosols. The average net 
result on global radiative forcing -not including the large but uncertain effects from cirrus 
clouds- is reported to be roughly equivalent to the warming effect of direct CO2 emissions from 
fuel consumption (Sausen et al. 2005). However, simply multiplying CO2 emissions by a factor 
to account for radiative forcing can lead to false conclusions (Kollmuss and Crimmins 2009).  
The climate impact of individual flights varies considerably, ranging from net cooling in some 
cases to flights with several times the impact of typical flights. The particular contribution of 
warming and cooling factors depends on altitude, temperature, humidity, the chemical 
composition of air, geographic region, time of day, season and other factors. Impacts also occur 
over vastly different time scales, ranging from hours to centuries, thus complicating the selection 
of global warming potential of a single pulse of emissions. Furthermore, net radiative forcing 
models assume that warming in one location cancels cooling in another, rather than producing 
separate distinguishable impacts on local climates.   
 
Despite the limitations of using radiative forcing, carbon calculator modelers need some way to 
express climate impacts from air travel without relying on highly complex models with detailed 
and time-consuming user interfaces. In the absence of standards, carbon footprint calculator 
modelers have typically chosen to either ignore non-CO2 impacts, or include a factor to account 
for radiative forcing. In the current version of the calculator we use the radiative forcing 
multiplier of 1.9 as proposed by Sausen et al. (2005) to account for non-CO2 impacts. While this 
factor is not specific to individual flights is it is a reasonable representation of average climate 
impacts from air travel. This approach is consistent with the assumption of typical impacts from 
consumption in the rest of the calculator. The total multiplier to account for for non-CO2 
atmospheric effects and well-to-pump emissions (1.9 + 0.26) is rounded to 2, i.e., total air travel 
emissions = direct emissions x 2. This is very likely a conservative number considering we have 
not included the large but uncertain global warming impact of cirrus cloud formation or emission 
from airports.  
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3.2.1.4.	
  Household	
  Energy	
  
 
Household consumption of electricity, natural gas and other fuels is provided in dollars by the 
CEX for each household type by income and size. However, CEX does not disaggregate 
electricity, natural gas and other fuels for metropolitan statistical areas. Regional energy 
consumption varies considerably due to different energy prices, weather, heating fuels, housing 
size and construction and other factors (Glaeser and Kahn 2010). Another possible source of 
data, the American Housing Survey (AHS) (U.S. Census 2014a), provides average expenditures 
on electricity, natural gas and other fuels for each city; however, the AHS only includes a sample 
of cities every two years and inter-annual variation of energy consumption would confound 
comparisons. A modeling approach may be best suited to account for both regional variation and 
the influence of household types on energy consumption; however, such an approach is outside 
the scope of the current study.  
 
Given the data limitations mentioned above, we have approximated benchmark electricity and 
natural gas consumption for each household type (location, household size and income) as 
follows: 
 

 
 
where, 
I = impact, expressed in gCO2e/year 
D = dollars spent per year on electricity or natural gas for each household type (h) of income and 
household size in the CEX  
P = price of energy per US State (s) in dollars per physical unit of fuel 
E = emission factor for each US State (s) in gCO2e per physical unit of fuel 
 
This formula effectively scales state-level consumption of electricity, natural gas and other fuels 
by household type (size and income) for the default values in the calculator. As in all other 
section of the calculator, users can overwrite the default values with their own consumption 
levels (in dollars or physical units). A discussion of emission factors used in the analysis follows.  

 
Direct emissions from household energy 
 
Households contribute direct GHG emissions from the burning of fossil fuels in homes.  Natural 
gas is typically the largest single contributor to direct household emissions for U.S. households. 
Natural gas is assumed to produce 117 lbs CO2/Mbtu. The CEX category “fuel oil and other 
fuels” includes expenditures on fuel oil, coal, wood, bottled gas and other fuels, accounting for 
8% of total household energy expenditures for the average U.S. household, and 0.3% of total 
household expenditures. Published CEX tables do not disaggregate consumption by individual 
fuels, making approximation difficult. Considering the relatively small contribution to total 
household GHG emissions from other fuels for most households, we use a single emission 
factors of 682 gCO2e/$ provided by the EIO-LCA (Green Design Institute, C.M.U. n.d.) model. 
This approximation can be expected to contribute only a very small fraction of the total 
uncertainty in carbon footprint estimates for most households, although in northeastern United 
States, where heating oil is more predominant, the total uncertainty can be expected to be 

ssh EPDI **=
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substantially higher. Further work will be required to refine this calculation in future versions of 
the calculator, which may provide more reasonable estimates based on fuel consumption of 
different fuel types in physical units.  
 
Other direct emissions from wood burning, fertilizers, and chemical processes are assumed to be 
relatively small in comparison to other categories of emissions and are excluded from the current 
analysis. 

 
Indirect emissions from electricity production 
 
Greenhouse gas emission factors (EF) for electricity are from eGRID (U.S. E.P.A. 2013). This 
database aggregates air emissions for each generator at thousands of electricity power plants in 
the United States. Aggregation is available at the level of U.S. states and 25 grid sub-regions. 
The eGRID data provided at the level of U.S. states account for generated electricity only, 
excluding imports and exports of electricity, and are therefore are not appropriate for the 
development of carbon footprint calculators. EPA recommends the use of eGRID sub-regions for 
accounting purposes; however, sub-regions do not always correspond well with U.S. states, 
which is currently the only geographic information asked by users in our online model. As a 
partial solution to this problem, we map the boundaries of U.S. states to individual eGRID 
subregions, with the exception of New York, which is assumed to be the average of three 
subregions.2  In the case of California, users can select electric utility provider, with GHG 
emission factors for the year 2006 provided by the California Air Resources Board (ARB 2010), 
as reported to the California Climate Action Registry.  
 
Indirect emissions from electricity and natural gas life cycles 
 
Electricity consumption also indirectly results in GHG emissions during the production, 
processing, transmission and storage of fuel, as well as during the construction and maintenance 
of power plants. Pacca and Horvath (2002) first approximated pre-combustion and construction 
life cycle emissions from coal, natural gas, wind, hydro and solar power plants in the Upper 
Colorado River Basin. Total life cycle emissions were 9% higher than emissions from 
combustion alone for a coal-fired power plant and 14% higher for a natural gas plant. Using a 
different methodology, Jaramillo et al (2007) produced roughly the same results for these fuel 
sources. We developed pre-combustion indirect electricity emission factors for each eGRID 
subregion by multiplying the fuel mix in each region by emission factors (tCO2e/MWh) 
provided by Pacca and Horvath. When state boundaries include more than one eGRID subregion 
we used the average fuel mix for those regions. The results are shown in Table 6. For the average 
U.S. fuel mix, pre-combustion emissions are 9% of combustion emissions. With the exception of 
Alaska, which is dominated by hydro power, indirect emissions are between 8%-12% of direct 
emissions. Considering the margin of error in this analysis is likely greater than the difference 
between indirect emission factors for U.S. states, the current online model applies the U.S. 

                                                
2	
  We	
  are	
  currently	
  conducting	
  research	
  to	
  offer	
  more	
  geographically-­‐specific	
  electricity	
  
emission	
  factors	
  in	
  future	
  versions	
  of	
  the	
  calculator,	
  but	
  this	
  work	
  was	
  not	
  completed	
  at	
  the	
  
time	
  of	
  this	
  writing.	
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average indirect factor for all U.S. states. Future online versions of the calculator may 
incorporate the state-specific factors.  
 
We assume indirect emissions from natural gas (including extraction, processing and piping 
natural gas to homes) add 14% to direct emissions per Jaramillo et al. (2007). 
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Table	
  6.	
  tCO2	
  per	
  5.55	
  MWh/yr	
  capacity	
  of	
  electric	
  generation	
  per	
  U.S.	
  state	
  and	
  eGRID	
  subregion	
  

 

tCO2e per 5.55 MWh/yr capacity of electricity generation per U.S. state and eGRID subregion

State (eGRID subregion) %*** Coal Gas Total Coal Gas Wind Hydro Solar Total
USA 78% 37.85  8.92    46.77   3.11  1.23   0.02  0.03    -   4        9%
Alabama (SRSO) 0.79     50.51  4.53    55.04   4.15  0.62   -    0.02    -   5        9%
Alaska (AKMS) 0.70     -      1.53    1.53     -    0.21   0.00  0.34    -   1        36%
Arizona (AZNM) 0.81     35.70  13.06  48.76   2.93  1.80   0.00  0.02    0.00 5        10%
Arkansas (SRMV) 0.68     16.54  18.66  35.20   1.36  2.58   -    0.01    -   4        11%
California (CAMX) 0.74     9.29    17.46  26.75   0.76  2.41   0.02  0.09    0.03 3        12%
Colorado (RMPA) 1.00     55.94  8.04    63.98   4.59  1.11   0.01  0.04    -   6        9%
Connecticut (NEWE) 0.58     11.82  15.14  26.96   0.97  2.09   0.00  0.03    -   3        11%
Delaware (RFCE) 0.56     35.19  3.98    39.17   2.89  0.55   0.00  0.00    -   3        9%
District of Columbia (SRVC) 0.57     39.38  2.04    41.42   3.23  0.28   -    0.01    -   4        9%
Florida (FRCC) 0.65     20.48  16.12  36.60   1.68  2.23   -    0.00    -   4        11%
Georgia (SRSO) 0.79     50.51  4.53    55.04   4.15  0.62   -    0.02    -   5        9%
Hawaii (HIMS) 0.05     1.15    -      1.15     0.09  -     0.00  0.02    -   0        10%
Idaho (NWPP) 0.95     26.81  4.48    31.29   2.20  0.62   0.01  0.25    -   3        10%
Illinois (RFCW) 0.76     56.83  1.13    57.96   4.67  0.16   0.00  0.00    -   5        8%
Indiana (RFCW) 0.76     56.83  1.13    57.96   4.67  0.16   0.00  0.00    -   5        8%
Iowa (MROW) 0.84     57.37  1.67    59.04   4.71  0.23   0.02  0.02    -   5        8%
Kansas (SPNO) 0.85     61.07  2.45    63.52   5.02  0.34   0.01  0.00    -   5        8%
Kentucky (SRTV) 0.78     52.08  1.48    53.56   4.28  0.20   -    0.04    -   5        8%
Louisiana (SRMV) 0.88     64.89  1.45    66.34   5.33  0.20   -    0.01    -   6        8%
Maine (NEWE) 0.58     11.82  15.14  26.96   0.97  2.09   0.00  0.03    -   3        11%
Maryland (RFCE) 0.56     35.19  3.98    39.17   2.89  0.55   -    0.00    -   3        9%
Massachusetts (NEWE) 0.58     11.82  15.14  26.96   0.97  2.09   0.00  0.03    -   3        11%
Michigan (RFCM) 0.81     52.20  5.68    57.88   4.29  0.78   -    -      -   5        9%
Minnesota (MROW) 0.84     57.37  1.67    59.04   4.71  0.23   0.02  0.02    -   5        8%
Mississippi (SRSO) 0.79     50.51  4.53    55.04   4.15  0.62   -    0.02    -   5        9%
Missouri (SRMW) 0.88     64.89  1.45    66.34   5.33  0.20   -    0.01    -   6        8%
Montana (NWPP) 0.95     26.81  4.48    31.29   2.20  0.62   0.01  0.25    -   3        10%
Nebraska (MROW) 0.84     57.37  1.67    59.04   4.71  0.23   0.02  0.02    -   5        8%
Nevada (NWPP) 0.95     26.81  4.48    31.29   2.20  0.62   0.01  0.25    -   3        10%
New Hampshire (NEWE) 0.58     11.82  15.14  26.96   0.97  2.09   0.00  0.03    -   3        11%
New Jersey (RFCE) 0.56     35.19  3.98    39.17   2.89  0.55   0.00  0.00    -   3        9%
New Mexico (AZNM) 0.81     35.70  13.06  48.76   2.93  1.80   0.00  0.02    0.00 5        10%
New York (YNLI/NYCW/NYUP) 0.44     5.60    11.73  17.33   0.46  1.62   0.00  0.05    -   2        12%
North Carolina (SRVC) 0.57     39.38  2.04    41.42   3.23  0.28   -    0.01    -   4        9%
North Dakota (MROW) 0.84     57.37  1.67    59.04   4.71  0.23   0.02  0.02    -   5        8%
Ohio (RFCW) 0.76     56.83  1.13    57.96   4.67  0.16   0.00  0.00    -   5        8%
Oklahoma (SPSO) 0.98     43.44  15.45  58.90   3.57  2.13   0.01  0.02    -   6        10%
Oregon (NWPP) 0.95     26.81  4.48    31.29   2.20  0.62   0.01  0.25    -   3        10%
Pennsylvania (RFCE) 0.56     35.19  3.98    39.17   2.89  0.55   0.00  0.00    -   3        9%
Rhode Island (NEWE) 0.58     11.82  15.14  26.96   0.97  2.09   0.00  0.03    -   3        11%
South Carolina (SRVC) 0.57     39.38  2.04    41.42   3.23  0.28   -    0.01    -   4        9%
South Dakota (MROW) 0.84     57.37  1.67    59.04   4.71  0.23   0.02  0.02    -   5        8%
Tennessee (SRTV) 0.78     52.08  1.48    53.56   4.28  0.20   -    0.04    -   5        8%
Texas (ERCT) 0.86     28.92  19.63  48.55   2.38  2.71   0.01  0.00    -   5        10%
Utah (NWPP) 0.95     26.81  4.48    31.29   2.20  0.62   0.01  0.25    -   3        10%
Vermont (NEWE) 0.58     11.82  15.14  26.96   0.97  2.09   0.00  0.03    -   3        11%
Virginia (SRVC) 0.57     39.38  2.04    41.42   3.23  0.28   -    0.01    -   4        9%
Washington (NWPP) 0.95     26.81  4.48    31.29   2.20  0.62   0.01  0.25    -   3        10%
West Virginia (RFCW) 0.76     56.83  1.13    57.96   4.67  0.16   0.00  0.00    -   5        8%
Wisconsin (MROE) 0.84     53.02  4.95    57.98   4.35  0.68   0.00  0.02    -   5        9%
Wyoming (NWPP) 0.95     26.81  4.48    31.29   2.20  0.62   0.01  0.25    -   3        10%

* Includes direct fuel combustion emissions from coal and natural gas power plants, as reported by Pacca and Horvath, 2002

Indirect
/ Direct

** Includes indirect emissions from precombustion, steel, concrete and aluminum for hydro, wind and solar PV power plants, as 
reported by Pacca and Horvath, 2002
* E lectricity generation from coal, natural gas, hydro, wind and solar as a fraction of the total resources mix, as reported by 
eGRID. Resouces not included are nuclear, oil, geothermal, biomass, other fossil fuel and unknown sources

Direct* Indirect**
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3.2.1.5.	
  Water	
  and	
  waste	
  
 
The category “Water and other public services” in the CEX includes: water and sewerage 
maintenance, trash and garbage collection and septic tank cleaning. Emission factors (CO2e/$) 
for these services can be expected to vary widely from one location to the next. For example, 
according to the California Energy Commission (2007) water supply, conveyance, distribution 
and treatment requires 5,411 kWh per million gallons of indoor consumption in Northern 
California compared to 13,022 kWh per million gallons in Southern California.  
 
Regionalized emissions data on water and waste across the United States are not currently 
available and collection of these data was beyond the scope of the current study. Although EIO-
LCA is not capable of providing estimates of water and waste emissions at regional scales, it 
provides a reasonable rough proxy for average emissions at the national level. Since total 
emissions from water and waste amount to less than 3% of total emissions, this error can be 
considered minor, when weighed against the total household carbon footprint. Emissions from 
waste and waste are approximated by multiplying expenditures on “water and other public 
services” in the CEX by an emission factor of 4121 gCO2e/$ provided by EIO-LCA (Green 
Design Institute, C.M.U. n.d.) for the sector “water and remediation services”. 

 

3.2.1.6.	
  Shelter	
  
 
Few life cycle assessment studies of housing construction in the United States are currently 
available. This is rather surprising given the recent emphasis on “green building” practices for 
home construction. Results from case studies vary widely, including estimates of 20 mtCO2e for 
construction of a home in Canada (Baouendi, Zmeureanu, and Bradley 2005), 21 and 37 mtCO2 
for wood frame homes built in Atlanta and Minneapolis, respectively (Lippke et al. 2004), and 
80 mtCO2 for two homes in Michigan (Blanchard and Reppe 1998). It is unclear the extent to 
which differences are the result of methodological choices (e.g., the boundary of system 
analyzed) or actual differences in housing construction materials and processes. These few case 
studies may also not be representative of typical homes built in the United States.  
 
Using the top-down economy-wide EIO-LCA approach, Ochoa et al. (2005) estimate total 
emissions from U.S. housing construction of new residential 1-unit structures at 110 million 
mtCO2e in 1997, which equates to 100 mtCO2e per home for the 1.1M single-unit homes 
completed in that year (U.S. Census 2014b). Amortizing these emissions over a 50 year expected 
life time for the average single-unit home built in 1997 of 2,150 square feet (U.S. Census 2014b) 
results in an annualized emission factor of 930 gCO2e per square foot.  
 
Ochoa et al. acknowledge the high level of uncertainty associated with the EIO-LCA approach 
for housing construction and some of this research team proposed a hybrid approach in a later 
paper (Bilec et al. 2006). In the absence of improved emission factors available for typical U.S. 
housing construction, we use the approximated EIO-LCA value of 930 gCO2e per square foot. 
Further emissions from maintenance and repairs are accounted for under goods and services in 
the calculator under “Household maintenance and repair services” and “household furnishing 
and equipment”.  
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The average square feet of homes is determined by income level, as provided by the 2005 
American Housing Survey (U.S. Census 2014a) of the United States. When the user selects 
household size (one person, two person, etc.) the calculator displays average square footage of 
home (owned or rented) based on the average household income of a household of that size. 
 
Table	
  7.	
  Average	
  U.S.	
  home	
  size	
  (square	
  feet)	
  by	
  income	
  level	
  

 
 
 

3.2.1.7.	
  Food,	
  Goods	
  and	
  Services	
  
 
We use the Economic Input-Output Life Cycle Assessment model (Green Design Institute, 
C.M.U. n.d.), EIO-LCA, designed by the Green Design Institute at Carnegie Mellon University, 
and the Comprehensive Environmental Database Archive (Suh 2005), CEDA4.0 to calculate 
emissions from food, goods and services. EIO-LCA and CEDA are widely used economy-wide 
models of cradle-to-gate emissions of all major greenhouse gases for >420 economic sectors of 
the U.S. economy, of which 289 sectors are applicable to consumer demand (the rest are 
intermediate goods). Since emission factors are provided per dollar of industry output, and not 
per dollar of consumer expenditure, only the fraction of consumer dollars that is received by 
manufacturing industries should be input into EIO-LCA to determine emissions from 
manufacturing (Hendrickson, Lave, and Matthews 2010). We further calculate separate emission 
factors for transport to market (truck, rail, air) and wholesale and retail trade by multiplying the 
fraction of consumer dollars received at each life cycle stage to the corresponding emission 
factor in EIO-LCA, similar to (Norris, Croce, and Jolliet 2002) and outlined in. In order to 
update these emission factors from 1997 benchmark year, we adjust for inflation using the 
Producer Price Index (PPI).  
 
New EIO-LCA greenhouse gas emission factors for 2005 are therefore estimated as: 
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Income sqft
Less than $10,000* 1420
$10,000 to $19,999* 1419
$20,000 tp $29,999* 1502
$30,000 to $39,999* 1591
$40,000 to $49,999 1689
$50,000 to $59,999 1750
$60,000 to $79,999 1854
$80,000 to $99,999 1993
$100,000 to $119,999 2217
$120,000 or more 2500
source: American Housing Survey, 2005
*average of two categories
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where GHG emission factor (EF) is given in consumer dollars (C) or producer dollars (P) for 
each industry (i). PV represents the total value received by the producing industry (i) of dollars 
spent by consumers (CV) of commodities from industry (i). Truck, Rail and Air represent the 
value received by each sector to ship products to market, while wholesale trade (WT) and retail 
trade (RT) is the value-added from wholesale and retail trade (Bureau of Economic Analysis 
1997). Emission factors (EF) for trucking (t), rail transport (r), air transport (a), wholesale trade 
(wt) and retail trade (rt) are in given in producer dollars in EIO-LCA. The sum of all factors 
produces total emissions per consumer dollar at the point of sale for each of 589 commodities or 
services in the BEA accounts (Bureau of Economic Analysis 2002a). PPI is the Producer Price 
Index for each (of 70) I-O sector (i). 
 
Next, we created a concordance table between 589 products in BEA input-output accounts into 6 
categories of food, 7 categories of goods, and 10 categories of services, consistent with the 
calculator and the CEX datasets. Emissions for each category of consumption in the calculator 
are an average of emissions for all individual products in that category, weighted by average 
national expenditures on those products. For example, although adhesives and glues have an 
unusually high emission factor, at more than 700 gCO2e/consumer $, they account for less than 
2% of expenditures on office supplies. Therefore, the overall emission factor for office supplies 
is not greatly affected by the high emission factor of adhesives and glues. A list of final emission 
factors is provided in Table 8.  
 
A note on uncertainty: While emission factors using input-output (I-O) analysis are generally 
robust on the aggregate, there are basic well-understood limitations of the approach. It is 
essential to understand that I-O assumes average cost and average emissions for product 
categories and emissions are scaled linearly based in dollars spent on each category of goods. 
The second major limitation is that all products produced within the same sector of the economy 
(of which there are about 420 in the EIO-LCA model used in this analysis) are assumed to have 
the same emissions per dollar of sector output. Other sources of uncertainty included: 1) 
geographic variation (e.g., accounting for the effect of imports), 2) time lag due to infrequent 
updates of emission factors, 3) source data uncertainty and error, 4) modeling error, and 5) user 
input error (Hendrickson, Lave, and Matthews 2010; Ochoa et al. 2005).  

 
Given the inherent uncertainty in input-output analysis we considered it useful to compare results 
using two different models. Table 8 compares greenhouse gas emissions (metric tons CO2e/yr) 
embodied in food, goods and services consumed by the average U.S. household using CEDA 
(Suh 2005) and EIO-LCA (Green Design Institute, C.M.U. n.d.), as well as the mean of the two 
datasets. Results for each category of emissions are generally within 10%, with the exception of 
red meat, for which results in EIO-LCA are about 30% higher. For the online version of the tool, 
we created customized emission factors for food, goods and services by dividing total annual 
emissions (mean of CEDA and EIO-LCA results) for each category in the model by average 
household consumption (in dollars, or calories for food) of the same category. Default 
consumption values for food are from USDA (Gebhardt et al. 2007). Default consumption values 
for goods and services are from the Consumer Expenditures Survey.  
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Food 
 
Emissions from food are based on daily caloric consumption of meat (in total or separately for 
beef, chicken & poultry, other meat, and fish & seafood), dairy, cereals, fruits and vegetables, 
and other food. Default daily diets are based on the U.S. national average diet of 2505 calories 
per day and 1,879 calories per day for children (Gebhardt et al. 2007). Users can select the 
number of adults and children in the household.  
 
GHG emissions per calorie consumed of each food item are calculated using a top-down 
approach; all U.S. cradle-to-consumer GHG emissions from each food category (using EIO-
LCA) are divided by all calories consumed of food in that category according to USDA 
(Gebhardt et al. 2007). This process involves creating a concordance table between BEA and 
USDA food categories and categories used in the calculator.  
 

Table	
  8.	
  Carbon	
  footprint	
  of	
  average	
  U.S.	
  household	
  using	
  CEDA	
  and	
  EIO-­‐LCA.	
  Values	
  in	
  tCO2e/yr	
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GHG emission factors for food categories are calculated as follows: 
 

 $USfood,i * EFfood,i  / 116.8M households] / ∑ [Caloriesfood,i * 365days] 
 

where total annual household emissions of each food category are created by multiplying total 
US dollars spent in each food category ($USfood,i ) by the weighted GHG emission factor 
(EFfood,i ), divided by the number of US households (116.8M) in 2005. Total daily calories of 
each food item were aggregated from USDA data. Estimates of calories, emission factors and 
total emissions for each food item for adults, children and households for the typical U.S. 
household is provided in Table 9.  

 
Table	
  9.	
  Conversion	
  of	
  food	
  calories	
  per	
  day	
  to	
  gCO2	
  per	
  year	
  

 
 
As previously noted, we scale emissions based on household size, not based on expenditures on 
food. It is true that households in the upper income quintile spend more than twice as much on 
food than households in the lowest income quintile in the United States, as shown in Figure 3 
below. Previous studies have assumed a linear relationship between expenditures on food and 
emissions, thus households in the upper income quintile would be assumed to purchase twice as 
much food (in dollars and physical units). 

 

Conversion of Food Calories per day to gCO2 per year
Total Adult children

number of people 2.50            2.50              0
emission factor

Calories/day-
adult

Calories/day-
child

Calories/day-
household gCO2/calorie

tCO2/year-
household

Meat, fish, eggs 543             407               1,357             4.52            2.240           
Beef, pork, lamb 247             185               618               4.81            1.084           

Poultry & eggs 165             124               413               4.10            0.617           
Other (processed meat, nuts….) 58               44                 145               7.39            0.392           

Fish & seafood 73               54                 182               2.23            0.148           
Dairy 286             215               715               4.66            1.217           
Grains & baked goods 669             502               1,673             1.47            0.896           
Fruits & vegetables 271             203               678               3.03            0.748           
Other (snacks, drinks, etc.) 736             552               1,841             3.73            2.507           

-              
Total 2,505          1,879             6,263             3.26            7.608           
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Figure	
  3.	
  U.S.	
  household	
  expenditures	
  on	
  food	
  consumed	
  at	
  home	
  by	
  income	
  quintiles	
  ($/yr)	
  

 
Yet we see no evidence that upper income households actually eat more food than lower income 
households. For example, we know of no studies that suggest that higher income households in 
the United States are more overweight than lower income households (more likely the opposite 
may be true). We also do not find evidence that upper income households within the United 
States consume more meat and dairy. According the Consumer Expenditures Survey (2009), 
households in the highest income quintile spend 21% of their food budget on meat, compared to 
23% for the lowest income quintile. Expenditures on all other food categories are essentially 
identical between income quintiles: cereals 13%; meat ~22%; dairy 11%; fruits & vegetables 
~17%, other foods ~36% (Figure 4). Thus, while upper income households spend more than 2x 
on meat and dairy than lower income households, they also spend more than 2x on all other food 
categories as well; presumably, upper income households simply buy more expensive products. 
Given this remarkable uniformity it seems reasonable to assume identical diets, on a caloric 
basis, between households of different incomes within the United States. It may be important for 
future studies to at least consider a looser relationship between expenditures and diets.  
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Figure	
  4.	
  U.S.	
  household	
  expenditures	
  on	
  food	
  consumed	
  at	
  home	
  by	
  income	
  quintiles	
  (%) 

 
Food consumed in restaurants is considered to be similar to food consumed at home. 
Expenditures on food away from home are distributed proportionally between categories of food 
consumed at home.  While upper income households spend much more on food away from 
home, we do not have evidence that this represents a larger fraction of total calories or that food 
consumed away from home is somehow different than food consumed at home. While there 
likely are important differences, this would be a topic for further research. It is also important to 
note that our study includes emissions from all purchased food, which is about 1.5 greater than 
food that is eaten, on a caloric basis (i.e., about one third of food is assumed to be wasted). 
 
 

3.2.2. Methods for the greenhouse gas mitigation actions 
 
Upon completion of the carbon footprint calculator, users of the online tool can build scenarios 
to reduce carbon footprints from different potential actions. For the purposes of this paper, we 
have selected a single basket of 13 actions (the full online tool (CoolClimate Network 2014) 
contains about 40 actions), including the following: 1) trading in two 20 mile-per-gallon (mpg) 
vehicles for 25 mpg vehicles, 2) reducing driving speed and aggressive braking, 3) keeping tires 
inflated and replacing air filters regularly, 4) telecommuting to work 20 miles per week instead 
of driving, 5) riding a bicycle 20 miles per week instead of driving, 6) taking public transit 20 
miles per week instead of driving, 7) reducing air travel by 20%, 8) turning down the thermostat 
during winter, 9) turning up the thermostat during summer, 10) drying clothes on the line, 11) 
replacing five incandescent light bulbs with compact fluorescent light bulbs, 12) choosing an 
energy-efficient refrigerator, and 13) eating fewer calories, on average, with smaller portions of 
meat and dairy. Changing thermostat settings can also be interpreted to represent a potentially 
wide-ranging set of actions to reduce household energy consumption from heating and cooling. 
Where appropriate, we have accounted for interaction effects, e.g., simultaneously enhancing the 
fuel efficiency of the household vehicle fleet and reducing vehicle miles traveled. Actions were 
chosen based on prevalence in the literature (Dietz et al. 2009; Laitner and Ehrhardt-Martinez 
2009) and the potential for greenhouse gas reductions. 
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Only actions that result in positive net present value (i.e., savings) are considered. The selected 
actions clearly represent only a subset of total possible actions. Thus, we do not attempt to 
present an estimate of total potential reductions from behavior change, as other studies have 
attempted to do (Dietz et al. 2009; Laitner and Ehrhardt-Martinez 2009), but rather seek to 
demonstrate GHG and financial savings of a set of actions across different geographic and 
demographic household types.  
 
The Take Action page of the calculator allows individuals or households to estimate greenhouse 
gas and financial savings from a set of low carbon technology investments and behavior change 
opportunities, collectively called “Actions”. Each individual Action is itself a mini-calculation 
tool, allowing users to adjust multiple settings (depending on the action) to reflect their personal 
options and preferences. Results are based on local energy and fuel prices (based on data from 28 
major US metropolitan regions and all U.S. states), emissions from residential electricity 
production (at the level of U.S. states or utilities in the case of California), and local heating and 
cooling needs (for 250 U.S. regions).  
 
Carbon footprint savings are presented in metric tons of CO2 equivalent gases per year for each 
action and in total (including all pledged actions). Financial metrics include annual financial 
savings from changes in annual expenditures (e.g., reduced energy bills), 10-year net savings, 
upfront cost, 10-year net present value (NPV), return on investment (ROI) and simple payback 
period (in years). Users can adjust the discount rate (set to 8% by default) and annual inflation 
rate (set to 3% by default), which affects NPV and ROI. ROI is defined as ten year NPV over 
upfront cost.  NPV is defined as:  

 

 
         

 (3) 
where Ct is the financial saving at year t over 10 years, C0 is the upfront cost in year 0 and r is 
the real discount rate of 5%.  
 
Salvage value is assumed to be zero for all measures considered, only three of which include 
capital expenditures. In the case of motor vehicles, households are trading in existing used 
vehicles for other used vehicles so there is no additional salvage value. Similarly, refrigerators 
are not replaced, but rather Energy Star refrigerators are chosen at the time of purchase, rather 
than a non-Energy Star model. In the case of light bulbs, we assume there is no market value for 
used incandescent light bulbs. 
     
Where appropriate, interaction effects are considered. For example, fuel efficiency is increased 
by purchasing more fuel-efficient models, reducing top highway speeds, reducing rough braking, 
replacing air filters and keeping tires inflated. This new fuel efficiency is used to estimate 
savings from reducing vehicle miles traveled. Since many home upgrades include interaction 
effects, e.g., replacing water heaters and reducing water consumption, we have limited the 
number of actions in homes to actions the do not interact. While this limited number of actions 
does not present the full spectrum of benefits from home retrofits, it does serve our primary 

NPV =
Ct

1+ r( )tt=1

10

! "C0
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purpose of demonstrating the effects of the same basket of carbon footprint reduction strategies 
across different household types and geographic locations.  
 
Calculation of carbon footprint reductions and life cycle costs of measures  
 
1. Buy more efficient vehicles by 5 mpg: Let m1 be the miles household drives its vehicles per 
year = (21,200)($hh,t) / $2,100, where 11,000 is the average vehicle miles traveled for the typical 
primary vehicle (2), ($hh) is the annual expenditures on gasoline for each household type, t, in the 
CEX and $2,120 is the average U.S. household expenditures on gasoline. Carbon footprint 
savings (CFS) = (m1/ fec - m1/ fen)(EFd+i), where fe is the fuel efficiency of current vehicle, c, and 
the new vehicle, n; EFd+i, is the direct, d, and indirect, i, emission factor for gasoline. NPV = 
equation 3, where Ct = (m1 / pc – m1 / pn)* g, where g is the cost of fuel, assumed to be $3 per 
gallon, and C0 = $4,000, covering sales tax, registration and other fees associated with trading in 
two vehicles for two more efficient vehicles of equal value.  
 
2. Practice Eco-driving: CFS = m / fen * EFd+i – m / fenew (EFd+i), where fen is the new fuel 
economy of the household’s vehicle fleet after purchasing more efficient vehicles in Action 1, m 
= annual miles driven by household, fenew =  fe + (fen)(%HW)(%TS)(TS – HS)(0.01) + (fen)(1 - 
%HM)(TS - LS)(0.03), where 50% of vehicle miles, %HW,  are highways miles (Davis, Diegel, 
and Boundy 2008), the driver reaches top speed 50% of the time, %TS, LW is 65 miles per hour, 
TS is 70 miles per hour, 0.01 is the amount reducing driving speed increases fuel efficiency, and 
0.03 is the amount fuel efficiency increases by reducing rapid braking and acceleration (U.S. 
Department of Energy 2010). NPV = equation 3, where Ct = m5 / fen (G)– m / fenew (G), and C0 = 
0. 
 
3. Maintain vehicle(s):  CFS = m / fen * 2(EFd)(I), where I = fen (1+ 0.033 + 0.03), where 0.033 
and 0.03 are the amounts fuel efficiency increases by keeping tires properly inflated and 
changing air filters regularly, respectively. NPV = equation 3, where where fen is the new fuel 
economy of the household’s vehicle fleet after purchasing more efficient vehicles in Action 1 
and Practicing Eco-driving in Action 2, m = annual miles driven by household, Ct = m / fe (I) and 
C0 = $20 for air filers. 

 
4. Telecommute to work one day a week: CFS = (m2 / fen)(EFd+i) where fen is the new fuel 
economy of the household’s vehicle fleet after Taking actions 1,2 and 3, Action 1, m2 is the miles 
saved from telecommuting, which equals 1,400 miles per year (28 miles/day x 1day/week x 50 
weeks/yr). NPV = equation 3, where Ct = (m2 / fe)(g) and C0 = 0. 
 
5. Ride a bicycle 20 miles per week: CFS = (m3 / fen)(EFd+i) where fen is the new fuel economy of 
the household’s vehicle fleet after Taking actions 1,2 and 3, m3 is 1,000 miles per year (20 
miles/week x 50 weeks/year). NPV = equation 3, where Ct = (m3 / fe)(g) and C0 = 0. 
 
6. Ride the bus 20 miles per week: CFS = (m4 / fen)(EFd+i) – m4(EFb) where fen is the new fuel 
economy of the household’s vehicle fleet after Taking actions 1,2 and 3, m4 = m3 and EFb is 107 
gCO2e per passenger mile (Ranganathan et al. 2004).  NPV = equation 3, where Ct = (m4 / fe)(g) 
– $b(m4), where $b is 0, with the cost of public transportation assumed to be offset by reducing 
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vehicle depreciation and savings from  parking, insurance, maintenance and other vehicle 
expenses. 
 
7. Fly 20% less often: CFS = m7(EFaird+i)(0.20), where m7 = miles housed travels by air each 
year, EFaird of 223 gCO2e per passenger mile (Ranganathan et al. 2004) is multiplied by 2 to 
account for indirect atmospheric warming effects (Sausen et al. 2005). NPV = equation 3, where 
Ct = m7(0.20)($air), where $air is $0.12 per passenger mile (Bureau of Transportation Statistics 
2010) and C0 = 0.  
 
8. Replace 5 lightbulbs with CFLs: CFS = 5(0.075kW- 0.020kW)(1825)(EFelec), where (0.075kW 
– 0.020kW) is the different power consumption of the bulbs, 1825 is the hours bulb left on per 
year,  EFelec is the emission factor for electricity of the state (eGRID, Supporting Materials). NPV 
= equation 3, where C0 = $1.25 (Energy Star 2010), Ct = 5(0.075kW- 0.020kW)(1825)($elec) + 
$3, where $elec is the price of electricity per U.S. state (U.S. Energy Information Administration 
2010), $3 is the net present value of replacing 4 incandescent bulbs over 10 years.  
 
9. Turn down thermostat in winter:  Let EPU = CI * HDD(HSF/1000), where, HDD is the average 
heating degree days per U.S. state (National Oceanic and Atmospheric Administration 2002), 
HSF is the heated square feet of the home, CI  is the average US heating consumption intensity 
(U.S. Energy Information Administration 2005) for natural gas = 0.517. CFS = EPU * T∆ * 0.06 * 
5470, where T∆ is the time-weighted average decrease in thermostat setting, assuming thermostat 
is turned down 8 degrees for 8 hours at night and 2 degrees for 10 hours during the day (U.S. 
E.P.A. 2010), 0.06 is the amount of heating saved per degree thermostat is turned down (U.S. 
E.P.A. 2010) and natural gas produces 5470 gCO2/therm. NPV = equation 3, where Ct =  EPU 
(T∆)0.06($ng), where $ng is cost of natural gas per U.S. state (U.S. Energy Information 
Administration 2014a) and C0 = 0. 
 
10. Turn up thermostat in summer: Let EPU = CI * CDD(CSF/1000), where CDD is the average 
cooling degree days per U.S. state (National Oceanic and Atmospheric Administration 2002), 
CSF is the conditioned square feet of home, CI is the average U.S. cooling consumption intensity 
for electricity =  6.283 (U.S. Energy Information Administration 2005). CFS = EPU ( T∆ ) 0.06 * 
EFelec, where T∆ is the time-weighted average increase in thermostat setting, assuming thermostat 
is turned up 2 degrees for 10 hours on summer days and 4 degrees for 8 hours on summer nights, 
0.06 is the amount of cooling saved per degree thermostat is turned up (U.S. E.P.A. 2010). NPV 
= equation 3, where Ct = EPU (T∆)0.06($elec), where $elec is cost of electricity per U.S. state 
(U.S. Energy Information Administration 2014b) and C0 = 0. 
 
11. Choose Energy Star refrigerator: This action assumes the household is ready to purchase a 
new refrigerator and chooses an Energy Star model over a non-Energy Star model. Let Econ = (Fr 
+ 1.63*Fz)(I) + Bl, where Econ is annual electricity consumption, Fr is the refrigerator volume = 
14.8 cubic feet, Fz is the freezer volume = 6.8 cubic feet, I = 9.8 kW per cubic foot, Bl = 276 
kWh/yr. CFS = (Econ – Ees)(EFelec), where Ees = 0.8(E con). NPV = equation 3, where Ct = (Econ – 
Ees)($elec) and C0 = $50.  
 
12. Dry clothes on the line: CFS = L (I) (EFelec), where L = 130 loads per year, I = 3.16 kWh per 
load. NPV = equation 3, where Ct = L (I) ($elec) and C0 = 0. 
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13. Diet switching: Compares CFS of user’s diet with lower carbon, and lower calorie diet. CFS 
=  ∑(mcEFmc,dcEFdc,ccEFcc,fcEFfc,ocEFoc) - (mnEFmn,dnEFdn,cnEFcn,cnEFcn,fnEFfn,onEFon), 
where the household caloric consumption of meat, dairy, cereals, produce and other food items is 
multiplied by emission factors, EF, for each item (Supporting Materials) for the household 
current, c, and recommended new, n. NPV = equation 3, where Ct is the difference in cost 
between the two diets, with food prices from (C2ER 2014) and average caloric consumption of 
each food item from (Gebhardt et al. 2007). 
 
 
Calculation of marginal abatement cost curves in main paper 
 
The marginal abatement cost (MAC) curves in the main paper (Figures 10 and 11) show annual 
reductions of CO2e for each measure on the x-axis and the levelized annual cost per metric ton of 
CO2e conserved annually on the y-axis. Levelized annual cost is calculated by converting the net 
present value (NPV) of a project (see calculations above) into a uniform series of annual 
payments over the expected project lifetime. This is accomplished by multiplying NPV by a 
uniform capital recovery factor (UCRF)(Rubin and Davidson 2001).  
 

 
 

 
 
Where d is the discount rate, which we assume is a 5% real discount rate for all measures. The 
area under the curves thus represents average annual financial savings of each measure. 
 
 

UCRF = d
1! 1+ d( )!n
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Table	
  10.	
  Emission	
  factors	
  and	
  estimated	
  uncertainty	
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3.3. Results and Discussion 
 
Carbon Footprint Results and Discussion 
 
The model produces default carbon footprint results for any combination of 78 regions	
  (50	
  U.S.	
  
states	
  and	
  28	
  major	
  metropolitan	
  regions), six	
  household	
  sizes,	
  and	
  12	
  income	
  brackets,	
  for	
  
a	
  total	
  of	
  over 2000	
  distinct	
  household	
  types.	
  Figure	
  5	
  shows	
  the	
  carbon footprint	
  of	
  the	
  
average	
  U.S.	
  household,	
  totaling	
  48	
  tCO2e	
  per year,	
  or	
  roughly	
  20	
  tCO2e	
  per	
  person,	
  for	
  the	
  
baseline	
  year	
  of 2005.	
  By	
  comparison,	
  average	
  per	
  capita	
  emissions	
  for	
  the	
  United States	
  
(total	
  U.S.	
  GHG	
  inventory	
  divided	
  by	
  the	
  population)	
  are about	
  24	
  tCO2e	
  per	
  person.	
  
Emissions	
  from	
  government expenditures	
  are	
  not	
  included	
  in	
  this	
  assessment.	
  Imports	
  are 
assumed	
  to	
  have	
  the	
  same	
  emissions	
  as	
  U.S.	
  goods	
  and	
  services.  
 
Direct	
  emissions	
  (primarily	
  from	
  transportation	
  fuels,	
  natural	
  gas	
  and	
  fuel	
  oil)	
  account	
  for	
  
23%	
  of	
  total	
  emissions,	
  while	
  indirect	
  emissions	
  account	
  for	
  77%.	
  Direct	
  motor	
  vehicle	
  
fuels,	
  9.4	
  tCO2e,	
  are	
  the	
  largest	
  contributor	
  to	
  total	
  emissions,	
  followed	
  by	
  electricity:	
  7.1	
  
tCO2e;	
  meat:	
  2.5	
  tCO2e;	
  well-­‐to-­‐pump	
  vehicle	
  fuels:	
  2.5	
  tCO2e;	
  healthcare:	
  2.4	
  tCO2e;	
  “other	
  
food”:	
  2.4	
  tCO2e;	
  natural	
  gas:	
  2.2	
  tCO2e;	
  and	
  air	
  travel	
  (direct	
  emissions	
  plus	
  indirect	
  
effects):	
  ~2	
  tCO2e.	
  	
  
	
  
Uncertainty	
  parameters	
  are	
  calculated	
  based	
  on	
  propagation	
  of	
  standard	
  error	
  estimates	
  
for	
  each	
  emission	
  factor.	
  These	
  estimates	
  are	
  largely	
  based	
  on	
  the	
  authors’	
  judgment	
  since	
  
published	
  error	
  estimates	
  of	
  emission	
  factors	
  and	
  consumption	
  are	
  rarely	
  available.	
  
Uncertainty	
  is	
  estimated	
  at	
  (1%	
  for	
  fuels	
  but	
  considerably	
  higher	
  (upward	
  of	
  20%)	
  for	
  
indirect	
  emission	
  factors	
  from	
  different	
  data	
  sets.	
  Additional	
  user	
  error	
  can	
  also	
  be	
  
expected	
  for	
  the	
  online	
  version	
  of	
  the	
  tool.	
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Figure	
  5.	
  Total	
  carbon	
  footprint	
  of	
  typical	
  U.S.	
  household:	
  48	
  tCO2e/yr.	
  Blue	
  indicates	
  direct	
  emissions;	
  green	
  is	
  
indirect	
  emissions.	
  	
  

The size and composition of carbon footprints vary substantially by location, income, and 
household size. Figure 6 shows average total carbon footprints of households of different sizes 
and income levels. A three-person household earning $100,000 per year has roughly double the 
carbon footprint of a three-person household earning $30,000 (60 tCO2e	
  vs. 30 tCO2e). 
Household size also influences consumption and emissions. A two-person household earning 
$70,000 emits 52 tCO2e per year, while a four-person household with the same income emits 64 
tCO2e; thus, doubling the number of people per household increases the carbon footprint by 23%, 
while decreasing per capita emissions by 60%. Increasing household size from two to four adds 
about another 10 tCO2e per household, regardless of income level. Two-person households are 
generally less carbon intensive than two single-person households on a per capita basis; the 
combined carbon footprint of two individuals earning $55k per year is about 70 tCO2e but only 
60 tCO2e for a two-person household earning $110k. Two single-person households have 
roughly the same carbon footprint as a typical household with two adults and two children. 
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Figure	
  6.	
  Carbon	
  footprints	
  by	
  income	
  bracket	
  and	
  household	
  size	
  

The composition of carbon footprints also varies considerably (Figure 7), with “housing” 
comprising 15-30%; transportation: 20-40%; food: 10-30%, between different household types. 
Carbon footprints of transportation fuel, natural gas, electricity, goods, and services increase 
predictably with income, with housing displaying low-income elasticity, and gasoline 
consumption increasing substantially as income rises. Food is a small contributor to total carbon 
footprints (~10%) for single-person households at high incomes but a large category of 
emissions at low incomes. 
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Figure	
  7.	
  Carbon	
  footprints	
  by	
  category	
  of	
  emissions	
  and	
  income	
  bracket	
  for	
  average	
  U.S.	
  household	
  size	
  of	
  2.5	
  
persons	
  

 
The size and composition of carbon footprints varies markedly by location (Figure 8), ranging 
from 38 tCO2e in Tampa to 52 tCO2e in Minneapolis. Transportation footprints range from 
8tCO2e in Tampa to 18 tCO2e in Los Angeles. Housing footprints (including direct and indirect 
emissions from energy, water, waste, and construction) range from 7 tCO2e in San Francisco to 
18 tCO2e in Kansas City. Emissions from food (5-7 tCO2e), goods (6-8 tCO2e), and services (5-7 
tCO2e) are quite consistent between cities. Cities with the lowest carbon footprints tend to have 
low transportation footprints; however, many cities with low transportation footprints have 
relatively large housing footprints, e.g., Kansas City, Denver, St. Louis, Cleveland, Cincinnati, 
and Atlanta. By contrast, San Francisco and San Diego, the two cities with the lowest footprints 
from household energy (<4 tCO2e for direct and indirect emissions from electricity, natural gas, 
other fuels) have large transportation footprints (~17 tCO2e, or nearly 40% of total emissions). 
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Figure	
  8.	
  Household	
  carbon	
  footprints	
  of	
  the	
  largest	
  (by	
  population)	
  28	
  metropolitan	
  statistical	
  areas	
  in	
  the	
  U.S.	
  

 
In contrast to differences at the household level, household size and income levels appear to have 
little effect on total carbon footprints of cities, as shown in Figure 9. While our model linearly 
scales emissions from food with household size, emissions from transportation, housing, goods, 
and services show no discernible difference as household size increases. Somewhat surprisingly, 
Minneapolis, which has the lowest household size (2.2 persons), also has the largest overall 
carbon footprint (52 tCO2e). Similarly, despite large differences in average annual household 
incomes (ranging from $51k in Miami to $75k in San Francisco), income has little effect on 
overall carbon footprints of cities. Several cities with relatively high household incomes have 
low overall carbon footprints (e.g., New York, Boston, and Baltimore). Higher population 
density, on the other hand, is strongly correlated with lower carbon footprints (r squared of 0.31), 
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in line with other city carbon footprint studies (Brown, Southworth, and Sarzynski 2008; Glaeser 
and Kahn 2010; Kennedy et al. 2009).  
 
 
 

 
Figure	
  9.	
  Household	
  carbon	
  footprints	
  of	
  U.S.	
  metropolitan	
  statistical	
  areas	
  by	
  household	
  income,	
  persons	
  per	
  
household	
  and	
  pop.	
  density	
  (persons	
  /	
  sq.mi.)	
  

 
Climate Action Planner Results 
 
The GHG and financial savings of each individual action are presented in Figure 10 in the form 
of a greenhouse gas abatement curve (Creyts 2007) with average annual GHG reductions on the 
x-axis and levelized annual cost per metric ton of CO2e conserved on the y-axis. Under this 
scenario, the average U.S. household reduces its carbon footprint by 20%, or 9.5 tCO2e per year, 
with an upfront cost of $4800, 10-yr net present value of $11,000 (at 8% discount rate and 3% 
inflation rate), and a payback of 2.6 years. Average financial savings are frequently greater than 
$100 per metric ton of CO2e conserved for this set of actions. Changing diet results in the largest 
financial savings ($850/yr), largely from lower assumed daily caloric consumption (2200 vs 
2500 calories for adults) and price differences between food items. Improving household fleet 
fuel efficiency by 5 miles per gallon results in 2.5 tCO2e/yr, the largest carbon footprint 
reduction opportunity modeled. Emission reductions from household energy (1.7 out of 10 tons 
total) requires a larger number of individual actions to achieve GHG reductions, although some 
of these are one-time actions, such as replacing light bulbs and choosing an Energy Star 
refrigerator, which are arguably easier to implement than actions that require daily changes in 
behavior. 
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Figure	
  10.	
  GHG	
  marginal	
  abatement	
  curve	
  for	
  avg.	
  U.S.	
  household.	
  

X-­‐axis	
  is	
  annual	
  GHG	
  savings;	
  y-­‐axis	
  is	
  levelized	
  annual	
  cost	
  of	
  mitigation	
  measures	
  per	
  metric	
  ton	
  of	
  CO2	
  
conserved.	
  Green	
  bars	
  are	
  for	
  changing	
  diets;	
  yellow	
  bars	
  with	
  blue	
  outline	
  are	
  transportation;	
  grey	
  bars	
  are	
  
household	
  energy.	
  	
  

 
Presenting carbon footprints and climate action plan results for each of the >2000 household 
types in the model is not possible for this paper; however, Figure 11 presents results for two 
hypothetical households for illustration purposes. Household A is a 2-person household earning 
$90,000 per year, living in the San Francisco Bay Area. Household B is a 5-person household 
with $45,000 annual income, living in St. Louis. Climate action plan results to achieve a 20% 
GHG reduction are presented for each household.  
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Figure	
  11.	
  Carbon	
  footprints	
  and	
  GHG	
  abatement	
  cost	
  curves	
  of	
  example	
  households	
  

Carbon footprints and GHG abatement cost curves for example households. Household A is an upper income 
two-person household in the San Francisco Bay Area. Household B is a middle-income five-person household 
in St. Louis. In the upper figures, carbon footprints are shown for the major categories of emissions, with 
annual CO2e emissions on the y-axis. In the lower figures, X-axis is annual GHG savings; y-axis is levelized 
annual cost of mitigation measures per metric ton of CO2e conserved. Green bars are for changing diets; 
yellow bars with blue outline are transportation; solid gray bars are household energy. 
 
The Carbon footprint of household A is dominated by emissions from motor vehicles and air 
travel. Emissions from household energy are about half of the U.S. average due largely to the 
relatively clean fuel mix of California’s electricity grid and moderate San Francisco Bay Area 
climate. The household has essentially no emissions from cooling. Emissions from goods and 
services outstrip emissions from food due to the household’s relatively high income and low 
number of household members. 
 
The total ~20% footprint reduction potential modeled corresponds to about $2100/yr in potential 
financial savings. As could be expected, transportation dominates total carbon footprint 
reduction potential (8 out of 10 tCO2e/yr total). The carbon footprint of household B is 
dominated by emissions from electricity. This is largely a product of high emissions per kWh of 
electricity in St. Louis and larger than average heating and cooling demands. Emissions from 
food also outstrip direct and indirect emissions from motor vehicles, due to the large household 
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size. This modest income family has lower than average emissions from goods and services. The 
household can save $1400 per year and reduce its carbon footprint by almost 3 tCO2e/yr by 
reducing overeating and waste from food and reducing the amount of meat, dairy, and 
nonessential food items consumed. Further savings of $500 per year and 3 tCO2e/yr can be 
obtained by increasing the family’s average fuel efficiency from 20 mpg to 25 mpg, reducing 
total vehicle miles traveled and practicing fuel-saving driving and vehicle maintenance habits. 
 
The household has virtually no emissions from air travel. Carbon footprint savings of 2 tCO2e 
can be achieved by adjusting the thermostat, replacing light bulbs, and line-drying clothes; 
however, financial savings are less than $200/yr due to relatively low energy prices in the state 
of Missouri. 
 
Discussion of Climate Action Planner Results 
 
Example households A and B demonstrate the utility of tailoring different carbon reduction 
policies and programs to different audiences based on the size and composition of household 
carbon footprints. For the typical two-person San Francisco household earning $90,000 per year, 
transportation carbon footprints outstrip household energy (electricity, natural gas, and other 
fuels) by more than five to one. For a typical five-person household in St. Louis, on the other 
hand, emissions from household energy are 1.5 times greater than emissions from transportation. 
While these represent rather extreme cases, Figures 11 (households A and B) demonstrate that 
the composition of carbon footprints can vary quite dramatically between different population 
segments, suggesting that one-size-fits-all messages, policies, and programs may be shortsighted 
and less effective than more targeted messages and programs. At the same time, assessing the 
actual potential for households to engage in lower-GHG lifestyles requires an understanding of 
the barriers preventing individuals from taking particular actions. For example, household B has 
roughly an equal opportunity to reduce emissions from transportation, household energy, and 
food. Increasing vehicle fuel efficiency may be attractive for the financial savings, although 
some families may perceive smaller, more fuel-efficient vehicles as being less safe. Reducing 
highway speed and aggressive driving, on the other hand, increases both safety and fuel 
efficiency. Saving household energy may also not be particularly appealing on financial grounds 
given the state’s low energy prices (the high carbon footprint of electricity may be more 
effectively addressed through policies to reduce the carbon-intensity of electricity production, 
and potentially raising prices on energy). Programs targeted at encouraging low-carbon and 
healthy dietary choices, on the other hand, may hold potential for this household type. Reducing 
the households’ food carbon footprint may be only a side benefit compared to the health benefits 
of reducing obesity, which is particularly prevalent in some lower income regions (Centers for 
Disease Control and Prevention 2014). 
 
The upper income 2-person household in California (household A) presents a very different set 
of mitigation opportunities. Similar to Household B, the carbon footprint of this household is 
about 20% higher than the U.S. average (and 6 times the global average); however, the carbon 
footprint is dominated by transportation, both from motor vehicles and air travel. The total 
financial savings of $2100 per year are much less of an incentive for higher income household, 
particularly if these savings involve a large number of actions that may take considerable time 
and effort. Improving the household’s average fuel efficiency from 20 to 25 mpg presents an 
attractive opportunity from a carbon footprint standpoint, saving 2.5 tCO2e/yr. While the $225/yr 
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in fuel savings may not be a large incentive, in environmentally conscious California clean cars 
can project higher social status, providing an important social incentive to drive fuel-efficient 
vehicles. Reducing air travel, or possibly purchasing carbon offsets, is an important aspect of this 
household’s carbon footprint mitigation potential. While emissions from food are small relative 
to other emissions, focusing on the health and environmental benefits of vegetarian diets may be 
attractive as a social marketing technique in this geographic region and demographic. 
 
While carbon footprint and GHG abatement opportunities vary greatly from one household type 
to the next, substantial GHG savings opportunities are possible across all geographic areas and 
demographic types modeled if behavior changes and energy efficient technologies are adopted. 
Financial and GHG savings potential from transportation are large across all household types; 
savings potential from diet switching depend largely on household size, and savings from 
housing depend largely on the price and GHG-intensity of household fuels, and energy 
consumption rates in different climate zones. 
 
While consumption-based carbon calculators are a relatively new concept, we suggest that they 
can be valuable to reduce consumption-related greenhouse gas emissions by 1) encouraging a 
larger range of individual and household behavior changes, 2) reducing rebound effects and other 
unintended consequences associated with a more limited view of   responsibility, 3) allowing 
individuals to benchmark their emission profiles with similar households, global averages and 
sustainable levels, 4) encouraging development of community action, 5) encouraging 
internalization of external costs related to greenhouse gas emissions and subsequently funding 
carbon mitigation projects, and 6) sending market signals to producers of goods and services to 
reduce supply chain and full life cycle emissions. Information campaigns alone have historically 
been noted to have had limited impact on changing consumer behavior;4 indeed most policies are 
directed not at individuals but at community-scales, such as encouraging urban infill to increase 
population density. Nonetheless, large differences exist between cities with similar population 
densities and other characteristics, implying that information may play some role in affecting 
attitudes, norms, habits, and other determinants of behavior (Cohen and Murphy 2001; Stern 
1992). 

 
Sustainable consumption has been called both the “next wave” (Simons et al. 2001; Tukker 
2006) and the “holy grail” (Jackson 2004) of environmental policy, highlighting both the 
enthusiasm for and the difficulty of actually implementing effective sustainable consumption 
programs and policies. At the same time, learning how to balance economic growth with 
environmental concerns is arguably the fundamental objective of sustainable development. 
Individuals can not learn to live more sustainably if they do not have information to help them 
make more environmentally benign decisions. Carbon footprint calculators are one mechanism to 
help consumers become aware of their impact on the planet and to target behaviors to reduce this 
impact over time. If carefully constructed, these tools may help realize some of promise and 
enthusiasm for sustainable consumption programs and policies. 
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Chapter 4: Spatial Distribution of U.S. Household Carbon Footprints3 
 

4.1. Background 
 
Demand for energy, transportation, food, goods and services drives global anthropogenic 
emissions of greenhouse gases (GHGs). Households in the United States alone are directly or 
indirectly responsible for between about 20% of annual global GHG emissions (Hertwich and 
Peters 2009) yet represent only 4.3% of total global population. In the absence of comprehensive 
national climate policy, U.S. states and over 1,000 U.S. mayors have committed to GHG 
reductions (Mayors Climate Protection Center 2008). In response, a new protocol exists for 
managing community-scale GHG emissions that emphasizes contributions from households. In 
order for compliance and voluntary policies to be effective, information is needed on the size and 
composition of household carbon footprints for all regions, at metropolitan, county, city and even 
neighborhood scales. As global urbanization accelerates, increasing by 2.7 billion people by 
2050 (United Nations 2011) the lessons from the data-rich U.S. experience will have increasing 
importance for planning efforts in urban areas of the world’s expanding list of mega-cities. 
 
Previous research using a diverse set of methods focused largely on large metropolitan regions 
has shown that household carbon footprints (HCF) vary considerably, with energy, transportation 
or consumption comprising a larger share of the total and with households in some locations 
contributing far more emissions than others (Glaeser and Kahn 2010; Hillman and Ramaswami 
2010; Sovacool and Brown 2010). For example, transportation in California comprises 35% of 
HCF, compared to 6% for household electricity, while electricity is frequently the largest single 
source of emissions in locations with predominantly coal-fired electricity (Jones and Kammen 
2011). Income, household size and social factors have been shown to affect total HCF, while a 
large number of factors have been shown to contribute to household energy and transportation-
related emissions (Baiocchi, Minx, and Hubacek 2010; Glaeser and Kahn 2010; Lenzen et al. 
2006; Weber and Matthews 2008).  
 
A number of studies suggest that geographic differences in emissions are in part explained by 
population density. Population-dense municipalities tend to be urban centers with employment, 
housing and services closely co-located, reducing travel distances, increasing demand for public 
transit, and with less space for larger homes. Early research by Newman and Kenworthy (1989) 
using data on 32 global cities, suggested a strong negative correlation between vehicle fuels and 
density (see Figure 16 below). More recent work using data from domestic and global cities has 
also seemed to confirm this relationship, although with more variance than previously thought 
(Karathodorou, Graham, and Noland 2010). One thread of research suggests that urban form (co-
location of housing, employment and services) to be a more important factor (Cervero and 
Murakami 2010; Ewing and Cervero 2001). On the other hand, a recent by Echenique et al. 
(2012) suggests that neither density nor urban form result in large CO2 benefits and these may be 
                                                
3 Reproduced with permission from: Jones, Christopher, and Daniel M. Kammen. 2014. “Spatial Distribution of 
U.S. Household Carbon Footprints Reveals Suburbanization Undermines Greenhouse Gas Benefits of Urban 
Population Density.” Environmental Science & Technology 48(2): 895–902. Copyright 2014 American Chemical 
Society. 
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outweighed by other social costs such as crowding and higher rents, although this study has met 
with considerable controversy (Wilson and Chakraborty 2013).  
 
These earlier studies have been limited to analyzing a small set of case studies, and the resulting 
conclusions are difficult to generalize beyond those included in the studies themselves. A large, 
nationwide dataset of all locations holds potential to re-assess the urban form hypothesis to more 
accurately describe the relationship between population, policy, urban form, and emissions.  Our 
primary research questions are: 1) how much variability exists in the size and composition of 
household carbon footprints across all U.S. locations, and 2) how much of this variability can be 
explained by population density, income, home size or other factors contributing to carbon 
footprints in urban, suburban and rural areas? 
 
In this work we developed econometric models to estimate household energy, transportation, 
consumption of goods and services and total carbon footprints at fine geographic resolution. Min 
et al. (2010) used national energy surveys to develop econometric models that could be applied 
at zip code tabulation areas to reasonably estimate household energy consumption.  Other work 
in the UK used demographic and lifestyle data to estimate more comprehensive household 
carbon footprints at fine geographic resolution (Baiocchi, Minx, and Hubacek 2010).  
 
We present a model that characterizes the size and composition of household carbon footprints 
for essentially every U.S. zip code, city, county, and U.S. state. Household carbon footprints are 
the greenhouse gas emissions required to produce, transport and dispose of all transportation, 
energy, food, goods and services consumed by households for one year. We use this information 
to develop high geospatial resolution household carbon profiles of each location and to analyze 
the effect of population density and level of urbanization on full life cycle GHG emissions.   
 

4.2. METHODS AND MATERIALS 
 
We use existing national household survey data to develop econometric models of demand for 
transportation, residential energy, food, goods and services. Independent variables used to 
predict household electricity, natural gas and other household heating fuels in the Residential 
Energy Consumption Survey (U.S. Energy Information Administration 2005) (n=4,363 
households) include: energy prices, heating fuel type, heating and cooling degree days, structure 
of homes (number of rooms, percent single-detached, year home built), demographic information 
(income, number of household members, age of householder, race), home ownership, percentage 
rural or urban, Census divisions and U.S. state. Predictive variables for motor vehicles miles 
traveled (VMT) in the National Household Travel Survey (Bureau of Transportation Statistics 
2002) (n=11,744 households) include number of vehicles owned, fuel prices, average time to 
work, percentage of commuters who drive to work, demographic information (income, number 
of household members, race), number of food and recreation establishments in the zip code, 
population density, Census region, and U.S. state. Independent variables for 13 categories of 
goods and 11 categories of services in the Consumer Expenditures Survey (Bureau of Labor 
Statistics 2008) (n=6,965 households) include household size and income. The total number of 
independent variables used in all models is 37, all of which were also compiled for zip codes for 
prediction purposes. Regression coefficients, t-statistics, and p-values for each independent 
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variable, in addition to model summary statistics (adjusted r-squared), various tests of model 
validation and description of uncertainty are provided in the Supporting Materials. 
 
The model regression coefficients were then applied to data known at the level of U.S. zip code 
tabulation areas (ZCTAs, or zip codes) in order to estimate demand for typical households of 
each category of consumption for >31k ZCTAs. Information on the demographic characteristics 
of population, the physical infrastructure of homes, travel patterns and economic activity are 
from the U.S. Census (U.S. Census Bureau 2013). Energy and fuel prices are from Energy 
Information Agency (U.S. Energy Information Administration 2014a) at the level of U.S. states 
(EIA). Heating and cooling degree-days were interpolated for each zip code from 5,500 NOAA 
weather stations (National Oceanic and Atmospheric Administration 2002) using Geographic 
Information Systems software. Diets for 15 categories of food for adults (first two household 
members) and children (remaining members) are from the USDA Nutrition database (Gebhardt 
et al. 2007). Demand was then multiplied by GHG emission factors, in carbon dioxide 
equivalents (Solomon 2007) for electricity (U.S. E.P.A. 2013), fuels (Office of Air Quality 
Planning and Standards 2013), and upstream emissions from fuels (Environmental Protection 
Agency 2013). Indirect life cycle emission factors for goods and services are from the CEDA 
economic input-output model (Suh 2005). Input-output life cycle assessment is widely used to 
approximate emissions from average goods per dollar of expenditures in the consumption 
literature (Lave and Matthews 2006). Emissions from water, waste and home construction are 
from previous work (Jones et al. 2012) and assumed to be the same for all households due to lack 
of regionally-specific data. We then created population weighted averages for each city, county 
and U.S. state. Zip codes were further classified into urban core, urban, urban fringe, suburban, 
rural fringe or rural in order to evaluate the effect of urban development on emissions using US 
Census data (Ingram and Franco 2012).  
 
To be clear, the models do not measure consumption, but rather estimate electricity, natural gas, 
vehicle miles traveled, goods and services for average households in zip codes using econometric 
models of national household survey data. As such, the results should be considered benchmarks 
by which measurements may be compared. We are limited to only variables available for for zip 
codes, and have left out potentially important variables, such as fuel economy of vehicles and 
local energy policies. Local energy policies are reflected in the model only to a certain degree, by 
inclusion of some states as dummy variables. 
 
The primary purpose of these models is prediction and not explanation or inference. Due to 
multicollinearity between independent variables, correlation coefficients should not be 
compared. In order to infer causation and explain the relative influence of independent variables 
we conducted a separate analysis of results for which we do explore the influence of 
multicollinearity (see Table 21 for a coefficient correlation matrix).  
 

Detailed model results 
This study uses econometric analysis of national household survey results to estimate household 
consumption at the level of U.S. zip code tabulation areas (ZCTAs), roughly equivalent to U.S. 
zip codes. Model variables were chosen only if equivalent data from U.S. Census or other 
sources are known for ZCTAs. There are 31,914 ZCTAs in the model, covering essentially all 
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populated areas of the 50 U.S. States. Eight separate linear and log-linear models were 
constructed for different categories of household consumption: one for vehicle miles traveled 
using the National Household Travel Survey (Bureau of Transportation Statistics 2002), five for 
household energy using the 2005 Residential Energy Consumption Survey (U.S. Energy 
Information Administration 2005), one for food and another for other goods and services using 
the Consumer Expenditures Survey (Bureau of Labor Statistics 2008).  Additional datasets and 
methods were used to fill in average consumption values for water, waste, and building 
construction following previous work (Jones et al. 2002). 

The purpose of these models is prediction, and not inference. In order to improve the predictive 
power of the models we intentionally include collinear variables, e.g., the price of natural gas 
and the price of natural gas squared. As a result of collinearity, the correlation coefficients or t-
statistics of independent variables should not be compared.  Collinearity increases the goodness 
of fit of the model, which is necessary for more accurate prediction; however, collinearity 
confounds the relative contribution of independent variables as expressed by t-statistics or 
standardized beta coefficients. As long there is no interpretation of the regression coefficients, 
adding collinearity is a completely valid approach and is common in the literature for similar 
studies (Min, Hausfather, and Lin 2010). In future iterations of the models we may choose to add 
interaction terms, which would further increase collinearity in order to enhance the goodness of 
fit.      

Electricity 
Model results for household electricity are shown in Table 11.   
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Table	
  11.	
  Log-­‐linear	
  multivariate	
  regression	
  model	
  of	
  household	
  electricity	
  consumption	
  

 

Dependent variable: LNKWH = natural log of electricity consumption in kWh/year 

Independent variables: 

• PRICEKWH	
  =	
  price	
  of	
  electricity	
  in	
  $/kWh	
  (EIA	
  average	
  residential	
  price	
  for	
  the	
  
year	
  2005	
  at	
  level	
  of	
  U.S.	
  states)	
  

• LNNHSLD	
  =	
  natural	
  log	
  of	
  number	
  of	
  household	
  members	
  
• HEATKWH	
  =	
  household	
  heats	
  with	
  electricity	
  
• TOTROOMS	
  =	
  number	
  of	
  rooms	
  
• CD65	
  =	
  cooling	
  degree	
  days,	
  base	
  65	
  (NOAA,	
  1971-­‐2000	
  30-­‐year	
  Climate	
  Normal	
  

of	
  over	
  5,000	
  weather	
  stations	
  interpolated	
  to	
  each	
  zip	
  code	
  in	
  GIS)(National	
  
Oceanic	
  and	
  Atmospheric	
  Administration	
  2002)	
  

• KWHPSQU	
  =	
  price	
  of	
  electricity	
  squared	
  

Unstanardized coefficients Standardized coefficients
B Std. error Beta t Sig

(Constant) 4.82 0.64 7.6 0.000
PRICEKWH -6.93 0.28 -0.43 -24.5 0.000
LNNHSLD 0.31 0.01 0.25 21.5 0.000
HEATKWH 0.35 0.02 0.22 19.8 0.000
TOTROOMS 0.09 0.01 0.24 18.6 0.000
CD65 0.00 0.00 0.21 17.5 0.000
KWHPSQU 1.93 0.18 0.17 10.9 0.000
CA -0.26 0.03 -0.11 -10.3 0.000
LNINCOME 0.09 0.01 0.11 9.7 0.000
RURAL 0.14 0.02 0.08 7.9 0.000
DIV8 -0.218 0.03 -0.08 -7.8 0.000
DETTACHED 0.14 0.02 0.09 7.3 0.000
WHITE 0.122 0.02 0.08 6.0 0.000
REG2 -0.09 0.02 -0.06 -5.1 0.000
YEAR 0.001 0.00 0.05 4.4 0.000
BLACK 0.110 0.03 0.05 4.2 0.000
FL -0.113 0.03 -0.04 -3.4 0.001
OWN 0.065 0.02 0.04 3.4 0.001
NY 0.086 0.03 0.03 2.5 0.011
AGEHHMEM1 -0.001 0.00 -0.03 -2.2 0.030
Dependent Variable: LNKWH
Weighted Least Squares Regression - Weighted by NWEIGHT

Model Summary

R R Square
Adjusted R 

Square
0.78 0.608 0.607

ANOVA
Sum of squares df Mean Square F Sig

Regression 33,916,985 19 1,785,104 357 0.000
Residual 21,839,244 4,362 5,007
Total 55,756,229 4,381
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• CA	
  =	
  Dummy	
  variable	
  for	
  state	
  of	
  California	
  (chosen	
  for	
  inclusion	
  because	
  it	
  was	
  
a	
  significant	
  variable)	
  

• LNINCOME	
  =	
  natural	
  log	
  of	
  household	
  income	
  
• RURAL	
  =	
  percentage	
  of	
  households	
  categorized	
  as	
  rural	
  
• DIV8	
  =	
  U.S.	
  Census	
  division	
  8	
  
• DETTACHED	
  =	
  percentage	
  of	
  single	
  detached	
  homes	
  
• WHITE	
  =	
  percentage	
  of	
  households	
  headed	
  by	
  race	
  coded	
  as	
  White	
  /	
  Caucasian	
  
• REG2	
  =	
  U.S.	
  Census	
  region	
  2	
  
• YEAR	
  =	
  year	
  home	
  built	
  
• Black	
  =	
  percentage	
  of	
  households	
  headed	
  by	
  race	
  coded	
  as	
  Black	
  /	
  African	
  

American	
  
• FL	
  =	
  Dummy	
  variable	
  for	
  U.S.	
  state	
  of	
  Florida	
  (chosen	
  for	
  inclusion	
  because	
  it	
  

was	
  a	
  significant	
  variable)	
  
• OWN	
  =	
  percentage	
  of	
  households	
  owned	
  by	
  occupant	
  
• NY	
  =	
  Dummy	
  variable	
  for	
  U.S.	
  state	
  of	
  New	
  York	
  
• AGEHHMEM1	
  =	
  Age	
  of	
  the	
  head	
  of	
  household	
  

Greenhouse gas emission factors for electricity are provided by the eGRID database at the level 
of eGRID subregions (U.S. E.P.A. 2013). The eGRID database aggregates emissions for each 
generator for thousands of power plants in the United States. Indirect “well-to-plug” emissions 
are assumed to increase generation emissions by 20% for electricity and natural gas, following 
the GREET model (Environmental Protection Agency 2013).  

Natural gas 
Heating fuel type varies significantly by region. Piped natural gas is typically not available in 
rural areas, and some large regions, including most of Florida. In order not to overestimate the 
use of natural gas in regions without natural gas connections we created three separate models to 
account for the fraction of homes in each zip code with different heating fuels. 
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Table	
  12.	
  Log-­‐linear	
  model	
  of	
  natural	
  gas	
  consumption	
  for	
  percentage	
  of	
  homes	
  with	
  natural	
  gas	
  heating	
  

 

Dependent variable: LNBTUNG = natural log of natural gas consumption in BTU/year 

Independent variables: 

• PNGSQ	
  =	
  price	
  of	
  natural	
  gas	
  squared	
  (EIA	
  average	
  residential	
  price	
  for	
  the	
  year	
  
2005	
  at	
  level	
  of	
  U.S.	
  states)(U.S.	
  Energy	
  Information	
  Administration	
  2014a)	
  

• TOTROOMS	
  =	
  number	
  of	
  rooms	
  
• HD65	
  =	
  heating	
  degree	
  days,	
  base	
  65	
  (NOAA,	
  1971-­‐2000	
  30-­‐year	
  Climate	
  

Normal	
  of	
  over	
  5,000	
  weather	
  stations	
  interpolated	
  to	
  each	
  zip	
  code	
  in	
  GIS)	
  
• YEAR	
  =	
  year	
  home	
  built	
  
• LNNHSLD	
  =	
  natural	
  log	
  of	
  number	
  of	
  household	
  members	
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• BLACK	
  =	
  percentage	
  of	
  households	
  headed	
  by	
  race	
  coded	
  as	
  Black	
  /	
  African	
  
American	
  

• HD65SQ	
  =	
  heating	
  degree	
  days,	
  base	
  65,	
  squared	
  
• REG1	
  =	
  Census	
  region	
  1	
  
• CD65	
  =	
  cooling	
  degree	
  days,	
  base	
  65	
  
• DETTACHED	
  =	
  percentage	
  of	
  single	
  detached	
  homes	
  
• AGEHHMEM1	
  =	
  Age	
  of	
  the	
  head	
  of	
  household	
  
• DIV	
  4	
  =	
  Census	
  division	
  4	
  
• OWN	
  =	
  percentage	
  of	
  households	
  owned	
  by	
  occupant	
  
• DIV7	
  =	
  Census	
  division	
  7	
  
• DIV8	
  =	
  Census	
  division	
  8	
  
• LNINCOME	
  =	
  natural	
  log	
  of	
  household	
  income	
  

Table	
  13.	
  Log-­‐linear	
  model	
  results	
  for	
  annual	
  natural	
  gas	
  consumption	
  for	
  percentage	
  of	
  homes	
  with	
  gas	
  heating	
  

 
Dependent variable: LNBTUNG = natural log of natural gas consumption in BTU/year 

Independent variables: 

• PNGSQ	
  =	
  price	
  of	
  natural	
  gas	
  squared	
  
• TOTROOMS	
  =	
  number	
  of	
  rooms	
  
• PRICENG	
  =	
  price	
  of	
  natural	
  gas	
  (EIA	
  average	
  residential	
  price	
  for	
  the	
  year	
  2005	
  

at	
  level	
  of	
  U.S.	
  states)	
  
• CA	
  =	
  Dummy	
  variable	
  for	
  the	
  state	
  of	
  California	
  
• LNNHSLD	
  =	
  natural	
  log	
  of	
  number	
  of	
  household	
  members	
  
• FL	
  =	
  Dummy	
  variable	
  for	
  the	
  state	
  of	
  Florida	
  

B Std. Error Beta t Sig.
(Constant) 8.4 0.3 27.5 0.000
PNGSQ -1,767 421.1 -0.690 -4.2 0.000
TOTROOMS 0.1 0.0 0.215 3.6 0.000
PRICENG 80.8 24.9 0.535 3.3 0.001
CA 0.4 0.2 0.164 2.8 0.006
LNNHSLD 0.3 0.1 0.159 2.7 0.007
FL -0.7 0.3 -0.151 -2.6 0.010
Dependent Variable: LNBTUNG
Weighted Least Squares Regression - Weighted by NWEIGHT

Model Summary

R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

0.474 0.225 0.206 1.016

ANOVA
Sum of Squares df Mean Square F Sig.

Regression 73 6 12.086 11.707 0.000
Residual 250 242 1.032
Total 322 248

Unstandardized Coefficients Standardized Coefficients
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Table	
  14.	
  Log-­‐linear	
  model	
  results	
  of	
  annual	
  natural	
  gas	
  consumption	
  for	
  percentage	
  of	
  homes	
  with	
  heating	
  oil	
  
as	
  main	
  heating	
  fuel	
  

Dependent variable: LNBTUNG = natural log of natural gas consumption in BTU/year 

Independent variables: 

• REG2	
  =	
  Census	
  region	
  2	
  
• NY	
  =	
  Dummy	
  variable	
  for	
  state	
  of	
  New	
  York	
  
• PNGSQ	
  =	
  price	
  of	
  natural	
  gas	
  squared	
  (EIA	
  average	
  residential	
  price	
  for	
  the	
  year	
  

2005	
  at	
  level	
  of	
  U.S.	
  states)	
  
• TOTROOMS	
  =	
  number	
  of	
  rooms	
  

 
Fuel Oil 
 

B Std. Error Beta t Sig.
(Constant) 10.63 0.43 24.74 0.00
REG2 -3.95 0.56 -0.62 -7.04 0.00
NY -1.11 0.28 -0.39 -4.02 0.00
PNGSQ -44.75 19.71 -0.20 -2.27 0.03
TOTROOMS -0.13 0.06 -0.19 -2.00 0.05
Dependent Variable: LNBTUNG
Weighted Least Squares Regression - Weighted by NWEIGHT

Model Summary

R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

0.686 0.471 0.442 1.063

ANOVA
Sum of Squares df Mean Square F Sig.

Regression 72.5 4.0 18.135 16.038 0.00
Residual 81.4 72.0 1.131
Total 154.0 76.0

Unstandardized Coefficients Standardized Coefficients
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Table	
  15.	
  Linear	
  model	
  of	
  annual	
  fuel	
  oil	
  consumption	
  for	
  percentage	
  of	
  homes	
  that	
  heat	
  with	
  fuel	
  oil	
  

Unstandardized Coefficients Standardized Coefficients
B Std. Error Beta t Sig.

(Constant) 228.95 90.022 2.543 0.011
TOTROOMS 75.846 8.985 0.434 8.441 0
REG1 128.895 55.587 0.118 2.319 0.021
OWN -164.353 48.794 -0.187 -3.368 0.001
AGEHHMEM1 2.836 1.043 0.134 2.72 0.007
DIV1 99.678 39.622 0.133 2.516 0.012
WHITE -94.047 47.165 -0.099 -1.994 0.047
Dependent Variable: GALLONFO

Model Summary

R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

0.454 0.206 0.193 337.761

ANOVA
Sum of 

Squares df Mean Square F Sig.
Regression 11,178,223 6 1,863,037 16 0.000
Residual 43,123,236 378 114,083
Total 54,301,460 384
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Transportation 
 
Motor vehicles 
 
Vehicle miles traveled (VMT) of motor vehicles driven by residents is modeled using the 
National Household Travel Survey (Bureau of Transportation Statistics 2002). Similar to 
household energy, only variable available at the level of ZCTAs are included in the model.  

Table	
  16.	
  Log-­‐linear	
  model	
  of	
  annual	
  household	
  vehicle	
  miles	
  traveled	
  

 

Description of Variables 

• HHVEHCNT	
  =	
  number	
  of	
  vehicles	
  per	
  household	
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• LNHHINVCV	
  =	
  natural	
  log	
  of	
  annual	
  household	
  income	
  
• AVE_TIMETOWK	
  =	
  average	
  minutes	
  commuting	
  to	
  work	
  
• LNHHSIZE	
  =	
  natural	
  log	
  of	
  number	
  of	
  people	
  in	
  household	
  
• RACEWHITE	
  =	
  percentage	
  of	
  residents	
  whose	
  race	
  is	
  “white”	
  according	
  to	
  the	
  U.S.	
  

Census	
  
• PCT_DRIVE	
  =	
  percentage	
  of	
  commuters	
  who	
  drive	
  to	
  work	
  instead	
  of	
  other	
  modes	
  
• Cen_d_wsc	
  =	
  West	
  South	
  Central	
  Census	
  Division	
  
• CEN_D_NE	
  =	
  Northeast	
  Census	
  Division	
  
• FOOD	
  =	
  number	
  of	
  food	
  establishments	
  in	
  zip	
  code	
  
• CEN_D_W	
  =	
  West	
  Census	
  Division	
  
• REC	
  =	
  number	
  of	
  recreation	
  establishments	
  in	
  zip	
  code	
  
• CEN_D_M	
  =	
  Middle	
  Census	
  Division	
  
• CEN_D_MA	
  =	
  Mid	
  Atlantic	
  Census	
  Division	
  
• LnPPOPD	
  =	
  natural	
  log	
  of	
  population	
  density	
  (residents	
  per	
  square	
  mile)	
  

 

Annual CO2e = VMT / mpg * EF gasoline 

Where, 

• VMT	
  =	
  vehicle	
  miles	
  traveled	
  	
  
• MPG	
  =	
  22	
  miles	
  per	
  gallon	
  	
  
• EF	
  gasoline	
  =	
  emissions	
  factor	
  of	
  gasoline	
  

 

All other household emissions 
All other sources of household emissions are extrapolated from Jones and Kammen (2011) 
which categorizes average household consumption and carbon footprints for 6 household sizes, 
12 income brackets and 28 metropolitan regions using the 2008 Consumer Expenditures Survey. 
All combinations of income bracket and household size total 72 distinct household types, with 
corresponding consumption profiles from the detailed survey.  We apply a simple linear 
regression model using household size and income as the two independent variables for each of 
the following dependent variables:  
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Table	
  17.	
  Categories,	
  subcategories	
  and	
  depending	
  variables	
  in	
  linear	
  regressions	
  of	
  household	
  consumption	
  

 

The Consumer Expenditures Survey of the Bureau of Labor Statistics (Bureau of Labor Statistics 
2008) provides estimates of consumer behavior across all categories of consumer spending. The 
survey consists of a national quarterly sample of ~15,000 in-person interviews and 3,200 detailed 
diaries. It is important economic instrument developed by the BLS to maintain the Consumer 
Price Index (CPI) as well as the CEX, which is widely used in economic studies, including 
consumption-based greenhouse gas accounting. Following our previous work (Jones and 
Kammen 2011) food is estimated at 3 metric tons CO2e per person. 

 

Validation of Model Results 
Evaluating the predictive power of the model for all geographic locations is not possible due to 
lack of comparable data. We therefore compared model results to several existing studies and 
datasets in order to better understand how well the model predicts consumption and emissions at 
different geographic scales. Figure 12 summarizes results for four model comparisons for 
household electricity and natural gas for California counties (upper figures), vehicle miles 
traveled for U.S. states (lower left), and total household carbon footprints for 28 metropolitan 
regions (lower right). Actual natural gas consumption is within 20% of predicted values for 26 of 
the 30 counties, and within 15% for 23 counties. Actual electricity consumption is within 20% of 
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predicted values for 23 of 30 counties. Actual VMT is within 20% of predicted values for 80% of 
U.S. states. The model tends to somewhat underestimate electricity and VMT for locations with 
relatively high values, thus differences between urban cores and suburbs described in the main 
paper are likely larger than estimated in this study. Total emissions for metropolitan statistical 
areas are well aligned, but somewhat higher in the current study compared to our previous work, 
which relied on the Consumer Expenditures Survey (CES) to estimate consumption. The 
difference may be due to weighting of sampled data, e.g., the CEX may have included more 
persons in urban cores, while our current dataset is a population-weighted average of all persons 
in all zip codes within metropolitan statistical areas.  Model results are comparable to other 
published studies. In particular, energy results are quite similar to Min et al. (2010) and the 
goodness of fit (r-squared) of the transportation model is similar to Glaeser and Kahn (2010).  

 

Figure	
  12.	
  Comparison	
  of	
  current	
  results	
  with	
  other	
  datasets.	
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Upper	
  left	
  figure	
  compares	
  predicted	
  natural	
  gas	
  consumption	
  to	
  average	
  household	
  natural	
  gas	
  
consumption	
  in	
  30	
  most	
  populous	
  California	
  counties	
  (California	
  Energy	
  Commission	
  2013).	
  Upper	
  
right	
  figure	
  compares	
  predicted	
  electricity	
  with	
  California	
  county	
  data.	
  Lower	
  left	
  figure	
  compares	
  
predicted	
  vehicle	
  miles	
  traveled	
  to	
  average	
  household	
  VMT	
  for	
  50	
  U.S.	
  states	
  (Department	
  of	
  
Transportation	
  2014b,	
  5–3).	
  Lower	
  right	
  figure	
  compares	
  total	
  household	
  carbon	
  footprints	
  with	
  
results	
  from	
  previous	
  work	
  (Jones	
  and	
  Kammen	
  2011)	
  using	
  the	
  Consumer	
  Expenditures	
  Survey	
  for	
  
28	
  metropolitan	
  regions.	
  

 
Herein we present results highlighting regional differences and explore the impact of population 
density and suburbanization. The dataset could also support a range of other potential results not 
included in this paper, including rankings, composition comparisons, mitigation analysis, 
efficiency ratings based on reported energy usage, quantitative spatial analysis, and comparison 
with source emissions. Interested readers are encouraged to visit the project website 
(CoolClimate Network 2014) to view detailed maps and results for any zip code, city, county or 
U.S. state. 
 

4.3. RESULTS  
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Figure	
  13.	
  Average	
  household	
  carbon	
  footprints	
  (HCF)	
  from	
  different	
  sources,	
  and	
  blowups	
  of	
  East	
  Coast	
  
metropolitan	
  areas.	
  

HCF from (A) electricity, (B) natural gas, (C) fuel oil and other fuels, (D) housing = A+B+C + water, waste 
and home construction, (E) transportation, (F) goods, (H) food, (I) services, and (G) total = D+E+F+H+I. 
Transportation includes motor vehicle fuel, lifecycle emissions from fuel, motor vehicle manufacturing, air 
travel direct and indirect emissions, and public transit. Scales below each map show gradients of 30 colors, 
with labels for upper value of lowest of quantile, median value and lowest value of highest quantile, in metric 
tons CO2e per household, for zip code tabulation areas (ZCTAs). These maps show broad regional patterns of 
average household carbon footprints in each ZCTA. East Coast metropolitan statistical areas (J), with a 
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larger map of New York metropolitan area (K, outer line) and New York City (K, inner line) highlight the 
consistent pattern of relatively low GHG urban core cities and high GHG suburbs.   
 
The broad regional patterns of household carbon footprints across the contiguous United States 
are shown in Figure 13 in aggregate, and for the home energy, transportation, goods, services, 
and food components.  It is important to note that this map allocates all emissions to households 
at the point of residence (a consumption perspective), and not where emissions physically enter 
the atmosphere (a production perspective). All data are presented on a per household basis, but 
show similar spatial patterns when viewed on a per capita basis. The Midwest, non-coastal East 
and much of the South have relatively high GHG emissions from electricity (1a), while the entire 
West and Northeast regions of the country show relatively low electricity emissions, due 
primarily to low carbon-intensity of electricity production. Natural gas (1b) and other heating 
fuels (1c) are concentrated in colder regions of the country, including the Midwest, Northeast 
and parts of the Pacific. Combining all energy emissions along with the life cycle emissions of 
fuels, water, waste and home construction into a single metric, “housing,” (1d) presents a more 
comprehensive view of the contribution of homes to HCF than when considering energy 
components independently. Viewed through this lens, the Midwest and much of the South have 
relatively high emissions, so do parts of the Pacific and much of the Northeast. HCF from 
transportation (1e), goods (1f), food (1h), services (1i) and in total (1g) are widely distributed 
across the United States with no distinct broad regional patterns; however, the largest 
concentrations of HCF are surrounding metropolitan regions. When viewing HCF maps at 
regional spatial scales it is evident that GHG hotspots surrounding metropolitan regions have low 
carbon footprint cores, with rural areas exhibiting average to low carbon footprints. Figure 13j 
demonstrates this effect for East Coast metropolitan statistical areas. This pattern holds across 
the United States, with larger cities exhibiting the strongest urban/suburban differences, e.g. the 
New York metropolitan statistical area (1k). 
 
A number of factors account for differences between household carbon footprints in urban cores 
and suburbs. Figure 14 shows transportation, energy, goods and total household carbon 
footprints for zip codes in the Atlanta metropolitan area. All data are in metric tons CO2e per 
household with colors reflecting the individual scales for each map, consistent with Figure 13. 
Outer dark line is the boundary of the 28-county metropolitan statistical area. Inner line is 
boundary of the city of Atlanta. The maps demonstrate relatively low carbon urban cores and 
high carbon suburbs for all major sources of household carbon footprints. Atlanta was chosen as 
the example for this figure because it is the most populous landlocked MSA. All other large 
MSAs show very similar patterns. The zip codes with the highest energy-related emissions are 
concentrated in a tight band of suburbs between 15 and 45 miles from the city center. Despite 
having the same weather, energy prices and carbon-intensity of electricity production, suburbs 
still exhibit noticeably higher energy-related emissions. Geographic differences are most 
pronounced for transportation-related emissions, which range from <10 tCO2e per household in 
the urban core to >25 tCO2e in the most distant suburbs. Income and household size contribute to 
larger consumption-related carbon footprints in suburbs. The combined result is distinct carbon 
footprint rings surrounding urban cores, with suburbs exhibiting noticeably higher HCF.    
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Figure	
  14.	
  Composition	
  of	
  household	
  carbon	
  footprints	
  in	
  Atlanta	
  for	
  Energy,	
  Transportation,	
  Goods	
  and	
  Total	
  

 
This large dataset allows for a more complete understanding of the effect of population density 
on communities than previous work limited to a number of cities. In Figure 15, total household 
carbon footprints are plotted against log10 of population density for all zip codes (a), cities (b), 
counties (c), metropolitan statistical areas (d), urban core cities (e) and the 100 most populous 
urban core cities (f). Carbon footprints in 10,093 cities (and also zip codes) are widely dispersed, 
with standard deviation of 9.2 and mean 52.0 tCO2e. In contrast, carbon footprints of entire 
metropolitan statistical areas are quite similar, 48 tCO2, S.D. 3.8. The red lines show mean HCF 
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for all locations within each tenths place along the x-axis. Mean HCF, standard deviation and 
range increase moderately until a threshold of about 3,000 persons per square mile is reached 
(3.5 on the x-axis), after which mean HCF decreases logarithmically by about 10 tCO2e for each 
tenfold increase in population density. Linear trend lines plotted for each chart reveal virtually no 
correlation between population density and household carbon footprints (r-squared = 0.001 for 
zip codes and cities, 0.01 for counties and metropolitan areas), with the exception of the 100 
largest cities (r-squared = 0.29). Other possible trend lines produce similar results, with or 
without a log x-axis. If plotting only the mean carbon footprints of highly dense cities, it is 
possible to find strong correlations between population density and transportation emissions or 
total HCF; however, this correlation completely disappears when considering all cities or 
metropolitan regions.  
 

 
Figure	
  15.	
  Average	
  household	
  carbon	
  footprints	
  of	
  cities	
  and	
  other	
  population	
  scales.	
  

Average	
  household	
  carbon	
  footprints	
  (HCF)	
  in	
  (a)	
  31,531	
  zip	
  code	
  tabulation	
  areas,	
  (b)	
  10,093	
  U.S.	
  Census	
  cities	
  
and	
  towns,	
  (c)	
  3,124	
  counties,	
  (d)	
  276	
  metropolitan	
  statistical	
  areas,	
  (e)	
  376	
  urban	
  core	
  cities,	
  and	
  (f)	
  100	
  largest	
  
urban	
  core	
  cities,	
  by	
  log10	
  of	
  population	
  per	
  square	
  mile	
  (log	
  of	
  population	
  density).	
  	
  The	
  red	
  line	
  in	
  each	
  figure	
  is	
  
the	
  mean	
  of	
  all	
  HCF	
  for	
  that	
  population	
  density,	
  calculated	
  to	
  the	
  tenths	
  place.	
  Linear	
  goodness	
  of	
  fit	
  trend	
  lines	
  
show	
  no	
  correlation	
  between	
  population	
  density	
  and	
  HCF,	
  with	
  the	
  exception	
  of	
  the	
  100	
  largest	
  urban	
  core	
  
cities,	
  R-­‐squared	
  =	
  0.29.	
  Mean	
  HCF	
  decreases	
  only	
  after	
  ~3,000	
  persons	
  per	
  square	
  mile	
  (or	
  3.5	
  on	
  the	
  x	
  axis).	
  
 
 
This finding is in contrast to previous research using a far more limited number of cities. 
Reprinted in Figure 16 below is Newman and Kenworthy’s 1989 plot of household gasoline 
consumption per population density of 32 global cities. This figure has been widely cited as 
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demonstrating a strong correlation between population density and fuel consumption and 
greenhouse gas emissions (with 651 Google Scholar citations for their 1989 Journal of American 
Planning Association paper (Newman and Kenworthy 1989) and 1249 Google Scholar citations 
for their book (Newman and Kenworthy 1999), which also contains the figure, as of this 
writing).  

 

Figure	
  16.	
  Gasoline	
  per	
  capita	
  vs.	
  population	
  density	
  (1980).	
  Reprinted	
  from	
  Newman	
  and	
  Kenworthy	
  (1989)	
  

For comparison, we have superimposed our results in Figure 17. The much larger set of cities 
included in our dataset shows a large range of gasoline consumption and very low correlation 
with population density (R2=0.11). However, if only considering average cities for each 
population density (red diamonds), there is a strong correlation (R2=0.86). This comparison 
demonstrates the effect of including all cities vs only selected cities in such an analysis.   
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Figure	
  17.	
  Gallons	
  per	
  capita	
  in	
  U.S.	
  cities	
  (blue	
  diamonds),	
  average	
  gallons	
  per	
  capita	
  for	
  each	
  tenths	
  place	
  on	
  
the	
  x-­‐axis	
  (red	
  diamonds)	
  and	
  results	
  form	
  Newman	
  and	
  Kenworthy	
  (bottom	
  line)	
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Figure	
  18.	
  Min,	
  mean	
  and	
  max	
  carbon	
  footprints	
  of	
  zip	
  codes	
  within	
  276	
  metropolitant	
  statistical	
  areas	
  (y-­‐axis)	
  
by	
  total	
  population	
  (x-­‐axis)	
  

In agreement with population density hypotheses, large, dense metropolitan areas do contain 
locations in city cores with very low HCF compared to smaller, less dense cities, but they also 
contain suburbs with relatively high HCF, more than offsetting the benefit of low carbon areas in 
city centers. Figure 18 shows the min, mean and max household carbon footprints of zip codes 
within each metropolitan statistical area. There is a strong negative correlation between 
population and min values (r-squared = 0.483) but also a strong positive correlation between 
population and max values (r-squared = 0.361). As metropolitan size increases the difference 
between the lowest and highest HCF locations grows from 1.5x for small metropolises to 4x for 
the largest.  Thus, while the 25 most populous MSAs contain locations with 50% lower HCF 
than average, there is a small but noticeable trend of higher overall household carbon footprints 
in larger metropolitan areas due to the influence of outlying suburbs. The two largest 
metropolises, New York and Los Angeles, break this trend by demonstrating lower than average 
HCF. 
 
Figure 19 is the same plot with population density on the x-axis instead of population. Linear 
goodness of fit lines are drawn between min, mean and max values, including R-squared for each 
line. Results from six metropolitan regions are labeled, including Jamestown NJ (lowest mean 
HCF), Chico, CA (second lowest mean HCF), Portland, OR (includes zip code with lowest 
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HCF), Minneapolis, MN (highest mean HCF), Philadelphia, PA (includes zip code with highest 
HCF), and New York, NY (highest population density). 
 

 

Figure	
  19.	
  Min,	
  mean	
  and	
  max	
  carbon	
  footprints	
  of	
  zip	
  codes	
  within	
  metropolitan	
  statistical	
  areas,	
  ordered	
  by	
  
log	
  of	
  population	
  density	
  (x-­‐axis)	
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Table	
  18.	
  Household	
  carbon	
  footprints	
  in	
  metropolitan	
  statistical	
  area	
  principal	
  cities,	
  suburbs	
  and	
  rural	
  &	
  
micropolitan	
  areas.	
  	
  

 
 
 
Table	
  19.	
  Household	
  carbon	
  footprints	
  in	
  metropolitan	
  statistical	
  area	
  principal	
  cities,	
  suburbs	
  and	
  rural	
  &	
  
micropolitan	
  areas	
  

 
 
Analysis of all urban cores (also called principal cities), suburbs and rural areas is presented in 
Tables 18 and 19. Large, population dense cities, which are defined as urbanized areas inside a 
principal city (Ingram and Franco 2012)  have lower HCF than smaller principal cities; however, 
the opposite is true with large, relatively population dense suburbs, which have higher HCF than 
smaller suburbs. We find no evidence that increased population density correlates directly with 
lower household carbon footprints in suburbs or rural areas; in fact, the opposite appears to be 
true. Transportation carbon footprints are about 50% higher in large suburbs compared to large 
principal cities, while total carbon footprints are about 25% higher, or 10 tCO2e. Table 19 
summarizes results from all U.S. zip codes, including 300M people, or over 99.6% of total U.S. 
population in the model year of 2007. Metropolitan statistical areas account for about 80% of the 
U.S. population and household carbon footprints. Principal cities, as defined by the U.S. Census, 
account for about 30% of U.S. carbon footprints, while locations outside of principal cities but 
still within metropolitan areas (suburbs), account for about 50% of total U.S. household 
contributions to climate change. Total HCF for all U.S. locations is nearly 6 billion metric tons 
of CO2 equivalent, or about 80% of total U.S. GHG emissions, but would likely be equivalent to 
nearly 100% of total U.S. GHG emissions if the carbon intensity of imports were considered 
(Weber and Matthews 2008). Our estimate aligns very closely with other national HCF studies of 
the United States (Hertwich and Peters 2009; Jones and Kammen 2011; Weber and Matthews 
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2008), all of which estimate average U.S. HCF at about 50 tCO2e. Future versions of this work 
would benefit from inclusion of a multi-regional input-output model to account for the carbon 
intensity of international supply chains (Weber and Matthews 2008).  
 
In order to develop the best explanatory model of the results we regressed total HCF against 
independent variables for each zip code in the dataset (Table 20). Of the 37 independent 
variables included in the regression models, 6 variables explain 92.5% of the variability for all 
zip codes, 96.2% in principal core cities and 94.6% in suburbs, as measured by adjusted r-
squared. In order of their influence on HCF, controlling for all variables entered previously (or 
stepwise) these are: number of vehicles per household, annual household income, carbon 
intensity of electricity, number of rooms (a proxy for home size, which is not available for zip 
codes), natural log of persons in household and log of population density (model 1 in Table 20). 
The next most significant variables (not shown) are average time to work, fuel prices for gasoline 
and natural gas, heating degree days and average year homes built; inclusion of these variables 
improves adjusted r-squared from 0.925 to 0.935.  Models 2-4 in Table 20 emphasize the role of 
population density on household carbon footprints. Consistent with Figure 15, model 2 confirms 
that is virtually no direct correlation between population density and all zip codes (β = 0.037, 
R2= 0.001) yet there is a reasonably strong correlation when considering only principal cities (β 
= 0.484, R2=0.234). Population density also becomes strongly significant when controlling for 
income and household size (β = -0.3) for all locations (model 3). When controlling for rooms and 
number of vehicles, population density is no longer significant due to multicollinearity between 
population density and these variables (see Supporting Materials for a correlation matrix). Thus, 
population density appears to affect the size of homes and vehicle ownership and these variables 
in turn affect HCF, along with income, the carbon intensity of electricity, household size, and 
other factors to a lesser degree. Overall, income is the single largest contributing factor to 
household carbon footprints, but the combined effect of other model variables, controlling for 
income, has far greater influence on the model goodness of fit. Income is positively correlated 
with population density for all locations (R2 = 0.339), but slightly negatively correlated when 
considering just principal cities (R2 =-0.078).  
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Table	
  20.	
  Summary	
  statistics	
  for	
  all	
  zip	
  codes	
  in	
  the	
  dataset	
  (all),	
  principal	
  cities	
  (cores)	
  and	
  suburbs	
  

 
 
 
The diverse composition of household carbon footprints between locations (see Figure 20) is also 
of significance. Emissions from travel are 3x larger than energy in some locations, while in other 
locations energy-related emissions are considerably higher than travel. Household energy 
comprises between 15% and 33% of total household carbon footprints for about 90% of 
locations, while transportation comprises between 26% and 42%. The carbon footprint of food 
ranges from 12-20% of total HCF and is in some cases larger than either transportation or energy 
carbon footprints. Previous research (Jones and Kammen 2011) has further shown that the size 
and composition of carbon footprints varies even more noticeably for households of different 
demographic characteristics within locations.  
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Figure	
  20.	
  Contribution	
  of	
  housing,	
  transportation,	
  food,	
  goods	
  and	
  services	
  to	
  total	
  household	
  carbon	
  
footprints	
  for	
  26,697	
  cities,	
  sorted	
  by	
  total	
  

 

These results should be understood in the context of uncertainty and the methods used to derive 
the estimates. We have used national survey data to predict consumption at fine geographic 
scales and have used average GHG emission factors to estimate emissions. This approach hides 
important regional differences. For example, while we estimated vehicle miles traveled for every 
zip code in the U.S. using locally-available data, we have assumed average vehicle fuel economy 
for all locations. We have also assumed similar diets, housing construction, water and waste-
related emissions due to lack of regionally specific data. Some of the model variables may 
indicate multiple conflicting aspects of urban form. For example, increased travel time may 
simultaneously indicate increased traffic, higher use of public transit and longer travel distances. 
Also, population density does not account for mixed use, such as commercial and industrial 
zones co-located in populated areas. Additionally, as noted under model validation in the 
Supporting Materials, the model tends to underestimate emissions for locations with relatively 
high consumption.  
 
 
Uncertainty  
 
These results should be understood in the context of uncertainty and the methods used to derive 
the estimates. We have used national survey data to predict consumption at fine geographic 
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scales and have used average GHG emission factors to estimate emissions. This approach hides 
important regional differences. For example, while we estimated vehicle miles traveled for every 
zip code in the U.S. using locally-available data, we have assumed average vehicle fuel economy 
for all locations. We have also assumed similar diets, housing construction, water and waste-
related emissions due to lack of regionally specific data. The results should be considered 
benchmarks by which more accurate local assessments may be compared; such an analysis 
would be akin to determining level of efficiency compared to what might be expected from 
similar U.S. locations. The model shows expected consumption given the variables known at the 
level of zip codes. Local energy policies are reflected in the model only to a certain degree, by 
inclusion of some states as dummy variables.  

The results from this analysis suggest sharp differences between urban and suburban households. 
The model likely understates these differences as it does not consider differences in motor 
vehicle fuel efficiency, which is likely higher in city centers that require smaller vehicles. City 
centers have also been shown to be more politically liberal and more likely to support climate 
change policy, including fuel-efficient vehicles, as well as other energy efficiency measures that 
are not captured in this model. Also, as noted under model validation above, the model tends to 
underestimate emissions for locations with relatively high consumption.  

The primary purpose of our paper is not to highlight which model variables have the strongest 
impact on HCF, particularly since we have been selective about which variables to include (i.e., 
only those available at the zip code level). Rather, the purpose is to build the strongest model 
possible to predict energy consumption, VMT, consumption, etc, at fine geographic resolution. 
As a result of multicollinearity between several variables in our consumption models variables 
should not be ranked based on the relative importance.  

In Table 20, on the other hand, we have attempted to explain relative contribution of independent 
variables on our results. For this purpose we created a single table of results from our regression 
models of energy, motor vehicles and consumption, in addition to the most important 
independent variables used in those models, for every zip code. We then created several 
multivariate linear regression models of these results in order to analyze the relative contribution 
of independent variables. We ran these models for the entire dataset of zip codes as well as for 
subsets of the data for principal cities (urban cores) and suburbs. Unlike our regression models of 
energy, transportation and consumption, for which prediction was the objective and collinearity 
was therefore not a relevant concern, the objective of this analysis was interpretation of causation 
so understanding of collinearity was essential. Coefficient correlations matrices and estimate of 
variance inflation factors is included in Table 21.  The variance inflation factors (VIF) of 
independent variables for the full model and suburbs were never greater than 2.0 in the full 
model, and 3.2 when just considering principal cities. We chose models 2, 3 and 4 in Table 20 in 
the to highlight the effect of colinearity, in particular the effects of population density and 
income. First, population density becomes not only a significant variable, controlling for all 
others, but it also becomes strongly correlated with rooms per household (a proxy for home size) 
and vehicles per household. The correlation between population density and income also 
becomes strongly negative, whereas in the full model the correlation is only slightly positive 
(i.e., relatively dense suburbs are richer and relatively dense principal cities are poorer). Entering 
variables in stepwise fashion was also helpful to understand interaction between variables. The 
variable with the strongest correlation with total CO2 per household is number of vehicles per 
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household. When controlling for income, the standardized beta coefficient decreases from 0.789 
to 0.613 and further decreases to 0.338 (lower than the beta coefficient of income = 0.499) when 
controlling for all 5 other independent variables included the full model.  Income correlates 
positively with population density when considering all zip codes, but slightly negatively when 
only considering zip codes in principal cities. VIF for all variables is under 2.0 for the full 
dataset, less than 3.2 for cores and less than 2.4 for suburbs. VIF near 3 indicates some 
collinearity, as is apparent in the correlation matrices; however, the level of collinearity is not 
severe enough to warrant excluding any variables from the model. As a rule of thumb 
collinearity is considered severe if VIF is over 10, and even then may not require excluding 
variables from the model (O’brien 2007).  

Table	
  21.	
  Pearson's	
  coefficient	
  correlations	
  matrices	
  of	
  results	
  presented	
  in	
  Model	
  1	
  and	
  VIF	
  

 

 

Quantification of uncertainty for the current dataset was not possible. While sampling error is 
available in national household surveys, including only this form of uncertainty would be 
misleading since many other sources of uncertainty exist, including measurement error, 
aggregation error associated with deriving average emission factors, model errors associated with 
using a limited number of variables, and other sources of error. The current paper draws limited 
conclusions that are strongly represented by the dataset and should not be greatly affected by 
uncertainty.  
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4.4. Discussion    
 
In this study we characterize average household carbon footprints of essentially all populated 
U.S. locations and reveal a new relationship between population density and household carbon 
footprints. In contrast to other research using much smaller datasets we find no direct correlation 
between population density and HCF when considering all U.S. locations (r-squared < 0.001 for 
zip codes and cities).  Furthermore, we find that the mean, variance and range of emissions 
actually increases until a population density of about 3,000 persons per square mile is reached, 
after which mean HCF declines logarithmically, leveling out at a lower limit of about 30 tCO2 
per household (35% below average) at densities over 50,000 persons per square mile. On 
average, household carbon footprints are 25% higher in suburbs compared to urban cores, yet it 
is the combined effect of urban cores and suburbs that define the contribution of metropolitan 
areas. The largest metropolises contain zip codes in the centers of urban cores that have roughly 
50% lower household carbon footprints than average, as well as outlying suburbs that are 
roughly 2 time higher than average, a factor of 4 difference. In contrast, the difference between 
lowest and highest HCF of zip codes in small metropolitan areas is only 1.5x. The combined net 
effect of HCF in urban cores and suburbs is slightly higher average HCF in larger metropolitan 
areas.   
 
The inverted U shape relationship between population density and household carbon footprints 
suggests the following relationship. Urbanization increases wealth, consumption and emissions. 
When population density reaches a threshold of about 3,000 persons per square mile, the mean, 
range and variance of household carbon footprints in urban cores decline due largely to smaller 
homes, lower gasoline consumption and also somewhat lower incomes. At the same time, carbon 
footprints and population in suburbs increase. The net effect of larger, more population dense 
metropolitan areas is a small increase in household contributions to climate change. The two 
largest metropolitan areas, New York and Los Angeles, are exceptions with somewhat lower net 
carbon footprints, suggesting the inverted U relationship may hold for extremely population-
dense metropolitan areas, or megacities. Similar comprehensive studies in other countries are 
needed to compare the effects of population density and suburbanization to see if lessons in the 
U.S. are transferable.  
 
[Note: see Chapter 7 for detailed discussion of the following paragraph, which is reprinted here 
exactly how it was published in Jones and Kammen (2014)] 
 
As a policy measure for suburbs, increasing population density corresponds to higher HCF due 
largely to income effects. Population density does correlate with lower HCF when controlling for 
income and household size; however, in practice population density measures may have little 
control over income of residents. Increasing rents would also likely further contribute to 
pressures to suburbanize the suburbs, leading to a possible net increase in emissions. As a policy 
measure for urban cores, any such strategy should consider the larger impact on surrounding 
areas, not just the residents of population dense communities themselves. Generally, we find no 
evidence for net GHG benefits of population density in urban cores or suburbs when considering 
effects on entire metropolitan areas.  
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Given these apparent limitations of urban planning our data suggests that an entirely new 
approach of highly tailored, community-scale carbon management is urgently needed. Regions 
with high energy-related emissions, such as the Midwest, the South and parts of the Northeast, 
should focus more on reducing household energy consumption than regions with relatively clean 
sources of energy, such as California. However, if household energy were the sole focus of 
residential GHG mitigation programs, then between two-thirds and 85% of household carbon 
footprints would be left unaddressed in most locations; the full carbon footprint of households 
should be considered in community GHG inventories and management plans. Suburbs, which 
account for 50% of total U.S. HCF, tend to have high motor vehicle emissions, large homes and 
high incomes. These locations are ideal candidates for a combination of energy efficient 
technologies, including whole home energy upgrades, solar photovoltaic systems and electric 
vehicles. Food tends to be a much larger share of emissions in urban cores, where transportation 
and energy emissions tend to be lower, and in rural areas, where household size tends to be 
higher and consumption relatively low.  
 
Several recent studies for California (Long et al. 2011; Wei et al. 2013; Williams et al. 2012) 
conclude that 80% reductions are possible only with near technical potential efficiencies in 
transportation, buildings, industry and agriculture. To the extent that these efficiencies are not 
met, highly tailored behavior-based programs must make up the difference to decrease demand 
for energy, transportation, goods and services that drive emissions.  
 
ASSOCIATED CONTENT 
 
Carbon footprints profiles of all U.S. zip codes, cities, counties and states are available on the 
project website: http://coolclimate.berkeley.edu/carboncalculator and an interactive mapping 
website: http://coolclimate.berkeley.edu/maps. 
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Chapter 5: Information Strategies to Enable Behavior Change 
 
Consumer demand for goods and services drives global economic activity and associated 
environmental impacts. Policies addressing consumption have overwhelmingly focused on 
increasing efficiency, producing less pollution and greenhouse gases for the same amount of 
work (Fuchs and Lorek 2005).  Yet reducing consumption directly has immediate benefits.  
Industrialized countries with the relatively low per capita GHG emissions also have lower rates 
of household consumption and motor vehicle usage (Hertwich and Peters 2009). There are two 
primary mechanisms to address household consumption via policy. First, urban planning holds 
potential to influence household behavior by making it easier to live more sustainable lifestyles. 
Chapter four highlights the importance of the home size and location as perhaps the two most 
critical factors driving household consumption. The second approach is to engage individuals 
and households directly, in their existing environments, through behavior change interventions. 
This chapter reviews theory relevant to designing effective behavior campaigns. Chapter six 
presents a pilot program designed to scale up the adoption of low carbon technologies and 
practices in California cities.  

5.1. Relevant theories of behavior 
 
All major branches of social science (anthropology, economics, political science, psychology and 
sociology) contribute important theoretical frameworks toward understanding and influencing 
human behavior. Early behavioral theories were heavily grounded in economics and the “rational 
choice model.” Rational choice states that individuals calculate the costs and benefits of different 
choices and choose the option with the highest expected net benefits. The assumption is that 
consumers make optimal choices except in the presence of market barriers or market failures, 
which are well known in economics literature. Typical barriers preventing energy efficient 
behavior include information barriers (e.g., lack of perfect knowledge of present and future 
energy costs), split or misplaced incentives (e.g., when landlords own equipment and tenants pay 
energy bills), lack of financing options, regulator barriers (e.g., when pricing does not reflect the 
true cost of energy), and “gold plating,” (when efficiency is bundled with other high cost options 
consumers don’t need) (Blumstein et al. 1980; Golove and Eto 1996). Simon (1972) elaborated 
the concept of “bounded rationality” to account for the inability of individuals and organizations 
to fully account for risks and uncertainty given complex and imperfect information. Behavioral 
economists, drawing largely on work in experimental psychology, have pointed to other 
psychological processes that inhibit or influence rational decision-making. They suggest that a 
better understanding of psychology will help economists understand decision making “on their 
own terms” without rejecting the principles of neoclassical economics (Camerer, Loewenstein, 
and Rabin 2011).  
 
Approaches in psychology and sociology have tended to eschew the rational actor model in favor 
of psychological and social processes that do not have utility maximization as the fundamental 
goal of decision-making. Social psychologists emphasize the importance of other people’s 
attitudes on individual decision-making. Ajzen and Fishbein’s Theory of Reasoned Action 
(TRA) was the first to emphasize the importance of intention as the precursor to behavior. If an 
individual has a strong intention to do something they are much more likely to take that action. 
Intention is mediated by an individual’s attitudes toward the behavior and their beliefs about 
what others may think of their actions (a subjective norm). Azjen’s highly influential Theory of 
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Planned Behavior (TPB) (Ajzen 1991) extends this model by including a third factor influencing 
intention and also behaviors directly: perceived behavioral control, or the extent to which an 
individual believes s/he has the requisite skills, time, money, cooperation of others and general 
ability to conduct the behavior. Perceived behavioral control is quite closely related to Bandura’s 
(1977) concept of perceived self-efficacy, or individual’s belief in how well they are able to 
carry out particular actions. TPB has been widely applied to influence a wide range of behaviors, 
including alcohol, smoking, health tests, food choice, accident avoidance, collective action and 
promoting sustainable behavior (Jackson 2004).  
 
A second strand of theory extends the concept of attitudes with an emphasis on how values shape 
attitudes and ultimately personal norms toward given behaviors. In contrast to TPB, Schwartz 
(1977) argues that people often take behaviors to benefit others based on their personal values, 
regardless of what others may think of their actions. Schwartz contends that personal norms of 
behavior are the consequence of individuals’ awareness of consequences and ascription of 
responsibility. This theory was extended in Paul Stern’s Value Belief Norm Theory (Stern 2000) 
which postulates that positive correlation with biospheric values and negative correlation with 
egoistic values are conditions for pro-environmental behavior. In practices, however, pro-
environmental norms exhibit only a weak correlation with pro-environmental behavior (Jackson 
2004) as does intention. In a recent meta-analysis of 57 studies, intention explained only 27% of 
variance in pro-environmental behavior (Bamberg and Möser 2007).  
 
A somewhat less well-known theory, Triandis’ Theory of Interpersonal Behavior (Triandis 
1979), extends the previous models mentioned to include habit and affect (i.e., emotional 
responses). Habits have been shown to have a large influence on behavior. For example, the 
Transtheoretical Model of Behavior Change (Prochaska 2013) contends that behaviors are 
sustained only after an individual has gone through a process of contemplating, preparing, 
conducting, and maintaining actions. Habituated actions therefore do not require intentions, but 
act directly on behaviors. Triandis also includes emotive aspects of decision-making, e.g., when 
emotional appeals of advertising or product design influence product choice. Triandis’s theory 
has been shown to have more predictive power then the Theory of Planned Behavior (Bamberg 
and Möser 2007), but perhaps due to its complexity it has had less influence in the literature and 
in practice.   
 
In sum, a larger number of processes affect individual and collective behavior, including the 
influence of peers, values, attitudes, strength of habits, affect, perceived behavioral control, 
actual control (e.g., due to environmental conditions) and cognitive processes. Given this 
complexity, scholars and practitioners of social marketing often rely on segmentation to target 
behaviors to particular groups of individuals. One such study conducted by Opinion Dynamics 
for the California Public Utilities Commission (Opinion Dynamics 2009) conducted to 
characterize Californians’ potential uptake of energy efficiency measures. Using a statewide 
survey and statistical analysis to measure attitudes and behaviors the authors segmented the 
California population into five distinct groups. “Leading Achievers,” accounting for 22% of 
Californians, have strong environmental attitudes and have taken a number of important energy 
efficiency measures. They tend to by highly educated, politically liberal, older and wealthier than 
other segments. “Practical Spenders,” (18%) have also taken a number of efficiency measures 
but they are primarily concerned about making smart economic decisions and are not motivated 
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by environmental appeals. They tend to be older, more politically conservative and somewhat 
less educated. “Striving believers” (25%) are highly motivated by environmental appeals, but are 
younger, tend to be renters and have not yet engaged in large energy efficiency measures like 
their older “Achiever” counterparts. Other Californians are either “Thrifty Conservers” (21%) or 
“Disconnected” (15%) and are not ideal candidates for energy efficiency campaigns.  
 
Community-Based Social Marketing (CBSM) extends the importance of audience segmentation 
by targeting specific actions to specific localized population segments. CBMS, as elaborated by 
Doug McKenzie-Mohr (McKenzie-Mohr 2013) is a five step process: 1) choose actions with the 
most potential to meet objectives for target audience, 2) identify barriers and benefits of taking 
the action for the specific population, 3) use behavior change “tools” to overcome barriers and 
highlight benefits, 4) pilot test the intervention, and 5) scale up the intervention to the entire 
population. CBMS has been widely implemented as best practices in a range of contexts, 
including health and environmental campaigns.  Many of the “tools” used in CBMS are 
discussed below in the context of an energy-reduction competition.   
 
 

5.2. The promise of competitions 
 
Chapter six of this dissertation presents an inter-community energy and carbon footprint 
reduction competition that was designed, implemented and evaluated as part of this research. The 
competition design draws on a number of relevant behavioral theories and practices common to 
community-based programs seeking to encourage adoption of pro-environmental practices. This 
section presents some of the key behavioral concepts as well as results from a preliminary review 
of 20 energy reduction competitions, currently in preparation (Jones and Vine 2014).  
 
Previous studies have highlighted the effectiveness of competitions to motivate more sustainable 
behavior, particularly when combined with other intervention strategies, such as providing 
tailored information, encouraging commitments and goal setting, modeling of normative 
behavior, providing personal and comparative feedback and offering rewards like recognition 
and prizes (Petersen et al. 2007). Competition between groups fosters in-group collaboration, 
proving social motivations, and complementing intrinsic motivations for pro-social and pro-
environmental behavior. Individuals’ values, habits, abilities, attitudes, social ties and 
worldviews are also among the factors that influence behavior (Stern 2000). Competitions are 
thought to be particularly effective at engaging otherwise hard to reach populations (McKenzie-
Mohr and Schultz 2014) and not just the lowest energy users, who themselves have diverse 
reasons for engagement in energy conservation (Deumling, Meier, and Cook 2013). Energy and 
carbon footprint savings frequently result in average short-term savings 5-20% (Abrahamse et al. 
2005) and can lock in longer-term savings through purchase of new energy efficient equipment 
and habit formation (Maréchal 2010).  
 
Comparative feedback, providing normative information on the energy usage, goal achievement 
or performance of peers, may be the most essential theoretical construct underlying energy 
reduction competitions. Comparative feedback has received considerable attention in the 
literature, as well as in practice. Shultz et al. (2007) demonstrated the effectiveness of 
neighborhood comparisons to reduce household energy consumption. When combined with an 
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injunctive normative message of approval (e.g., a smiley face) or disapproval, neighbor 
comparisons result in consistent energy reductions. Recent studies comparing home energy 
reports in numerous randomized field trials demonstrate savings of 1-2% (Allcott 2011; Ayres, 
Raseman, and Shih 2012), with higher savings for high consuming households (Allcott 2011)  
and political liberals (Costa and Kahn 2013).  Home energy reports showing comparative 
feedback have grown into a billion dollar business, with companies like Opower providing 
reports to millions of residential energy consumers in the United States, and increasingly abroad. 
Energy reduction competitions typically show rankings of individual households, groups, office 
floors, buildings or other comparisons and encourage and reward participants for moving up in 
the rankings. In a recent meta-analysis of 156 information-based experiments (Delmas, Fischlein, 
and Asensio 2013), comparative feedback had the second highest average energy savings 
(11.5%) of strategies considered, after energy audits (13.5%), which tend to be considerably 
more costly and “high touch.” 
 
Descriptive and injunctive norms may further be applied in messaging strategies directly with 
participants. The power of norms to influence behavior has been known for many decades. In 
one famous study showing descriptive norms Milgram, Bickman and Berkowitz (1969) asked a 
crowd of people to stand on a street corner and look up at an empty spot on a building; the more 
people in the crowd, the more likely other people were to stop and look up. This may be an 
adaptive behavior that acts as a shortcut to reduce decision-making; by merely observing and 
imitating others we are likely to make reasonable decisions in less time. Environmental 
campaigns should take care to use descriptive norms appropriately. If most people behave in a 
non-environmental way, pointing this out may lead to less environmentally-friendly behavior 
(Cialdini 2003). Instead, according to the Focus Theory of Normative Conduct by Cialdini and 
colleagues (Cialdini, Reno, and Kallgren 1990), in these cases it is better to focus on what is 
socially acceptable behavior, or an injunctive norm. This was demonstrated elegantly in a pilot 
study at a petrified national forest where signage previously indicated that every day wood was 
stolen from the forest, totalling 14 tons per year. When signage was changed to a strong 
injunctive message (“if even one person steals, it undermines the integrity of the forest”), pillage 
was reduced by 80% (Cialdini et al. 2006).  
 
Normative messaging and other persuasive messaging techniques (Goldstein, Martin, and 
Cialdini 2008) may be most influential when the messenger is trusted and credible (Fuller 2011). 
In most cases this means messages should come from someone that is known to participants 
locally, a central tenet of community-based social marketing (CBSM) (McKenzie-Mohr 2013). 
Under CBSM, community members are in the best position to develop meaningful strategies to 
overcome barriers and highlight the benefits of taking particular actions. Local messengers may 
also use more effective language based on shared values, history and motivations. Messaging 
may also be more effective through the use of local images or stories, particularly if they tap into 
shared cores values, which evokes an emotive response (Schwartz 1994).  
 
Inter-community energy or GHG reduction competitions have not been systematically studied, 
and only a few have been conducted to date (Jones and Vine 2014), but several aspects of cities 
make them seemingly amenable to such an intervention. Cities are nexuses of social ties and 
social networks, which can help increase participation in pro-environmental programs through 
social diffusion (McKenzie-Mohr). Cities may also be particularly effective at disseminating 
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environmental messages and behaviors if people feel an emotional, cognitive or functional bond 
with their community, or place attachment (Halpenny 2010). Perhaps the most highly visible 
placed based attachment is when residents rally around a local sports team, particularly when 
there are rivalries with other communities. Building on this notion, the Kansas Take Charge 
Challenge, an energy reduction competition between small Kansas communities, chose tows 
within the same football conferences to compete (Barnett 2010). People may also feel more 
strongly connected to local institutions, such as schools, churches and social groups, which may 
be mobilized or formed into teams in a community-based energy challenge. 
 
Inter-community energy and GHG reduction campaigns have several advantages that make them 
suitable for community-based pro-environmental campaigns. First, they tend to appeal to a wider 
cross-section of the population than purely environmentally-focused campaigns (McKenzie-
Mohr and Schultz 2014). This enables them to reach a larger scale within communities while 
also engaging multiple communities at once. Second, the comparative feedback provided to 
participants may be much more visceral than reports showing generic neighbors, since 
participants are often ranked against their peers. Finally, gamification aspects, with participants 
completing actions and reaching intermediate goals, may enhance enjoyment and sense of 
achievement and positive feedback (Brewer, Lee, and Johnson 2011).  
 
A recent review of twenty energy reduction competitions (Jones and Vine 2014) demonstrates 
that most such programs utilize a number of complimentary behavior change strategies.  Figure 
21 shows the prevalence of behavior changes tools or strategies in each program. Green and a 
value of 2 indicates clear, explicit implementation of the strategy, while yellow and a value of 1, 
indicates a seemingly relatively weak implementation of the strategy, or if the strategy was not a 
central focus of the program. The most common approaches, in order of their frequency, were:  
 

1. Local	
  messengers:	
  when	
  messaging	
  about	
  the	
  program	
  comes	
  from	
  someone	
  they	
  
know	
  or	
  someone	
  local,	
  

2. Comparative	
  feedback:	
  information	
  on	
  performance	
  of	
  individuals	
  or	
  groups	
  of	
  
individuals	
  is	
  shared	
  among	
  participants,	
  

3. Competition:	
  participants	
  are	
  encouraged	
  to	
  outperform	
  their	
  peers,	
  
4. Incentives:	
  tangible	
  rewards	
  and/or	
  recognition	
  are	
  provided	
  based	
  on	
  

performance,	
  
5. Prompts:	
  reminders	
  to	
  complete	
  particular	
  behaviors,	
  
6. Social	
  diffusion:	
  participation	
  increased	
  through	
  use	
  of	
  social	
  networks,	
  
7. Descriptive	
  norms:	
  information	
  on	
  what	
  others	
  like	
  them	
  are	
  doing,	
  
8. Commitments:	
  pledges	
  to	
  take	
  particular	
  actions,	
  	
  
9. Goal	
  setting:	
  targets	
  to	
  achieve	
  
10. Scarcity:	
  when	
  there	
  is	
  a	
  limited	
  supply	
  of	
  something,	
  e.g.,	
  an	
  opportunity	
  to	
  earn	
  

points.	
  
 
Other techniques that are used more infrequently include scarcity, reciprocity, tailored feedback, 
instantaneous feedback, gamification, subjective norms, loss aversion, and coaching.   
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Figure	
  21.	
  Presence	
  of	
  common	
  behavior	
  tools	
  in	
  20	
  energy	
  reduction	
  competitions	
  

 
A major lesson of this review was competition is simply one of many strategies that may be used 
in an energy reduction program. Some competitions have very little emphasis on competition 
itself, while others made this the central focus. The success of program to change behaviors lies 
in the effectiveness of the program design and implementation, the capacity of local program 
managers to execute the program, and the motivations and characteristics of the populations 
targeted. 
 
A common critique of competitions is that an overemphasis on tangible rewards can reduce 
intrinsic motivation for individuals to take the desired behaviors and decrease the likelihood that 
the behaviors will be sustained when the rewards are withdrawn at the end of the competition 
(Covington and Müeller 2001). This effect can be wholly or partially mitigated by minimizing 
tangible rewards and by offering positive feedback (Deci, Koestner, and Ryan 1999), which 
tends to increase intrinsic motivation. Additionally, competition alone, in the absence of external 
reward, is thought to increase intrinsic motivation, by making the activities more challenging and 
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enjoyable. Evidence also suggests that recidivism after the competition ends depends on the type 
of reward and the social context in which rewards are offered; if intrinsic motivations are 
enhanced, the actions will be more likely sustained over time.  
 
Thus, competitions may be helpful in encouraging participation in pro-social and pro-
environmental behavior by making taking action more enjoyable, by providing feedback on 
performance, and by enhancing social interaction among participants. Since individuals did not 
receive prizes themselves in the Challenge intervention, the focus was on community benefits 
and recognition for city-wide achievements. Some cities did offer occasional raffle prizes based 
on points, but these were offered as surprise gifts and were not a central focus of the program. 
Messaging also focused on intrinsic motivations and utilized a number of behavior strategies, 
including comparative feedback, normative messaging, peers modeling desired behaviors and 
other strategies. The combination of these strategies was designed to enhance intrinsic 
motivation, while competition is used to make participation more meaningful and enjoyable for 
participants.   
 
Inter-city energy and greenhouse gas reduction competitions have only recently been tried (e.g., 
Mass Saves Challenge, the Kansas Energy Challenge). Previous programs have not been 
rigorously evaluated and little is known about why programs may or may not be successful. This 
study provides one of the first opportunities to evaluate a statewide inter-city greenhouse gas 
reduction competition. Given the novelty of this program, this study serves as a case study to 
improve understanding of similar efforts. The program is intended to demonstrate the ability of 
local communities to utilize behavior change practices to engage residents successfully in 
reducing household carbon footprints at scale. While this is only a pilot program (now in its 
second year), it may serve as a proof of concept to scale up future program efforts to engage a 
wider cross-section of California residents in voluntary greenhouse gas reductions.  
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Chapter 6: The CoolCalifornia Challenge: Using Inter-City Competition to Foster 
Community-wide Climate Engagement 
 

6.1. Introduction 
 
The goals of this project were to design, implement and evaluate a carbon footprint reduction 
program for California households and communities. The program, called the CoolCalifornia 
Challenge (or simply the “Challenge”), used inter-city competition and community-based social 
marketing strategies to motivate residents in participating California cities to understand, track 
and reduce household greenhouse gas emissions.  
 
A number of recent studies (Long et al. 2011; Williams et al. 2012; Wei et al. 2013) have 
concluded that large scale adoption of energy efficient and low carbon technologies will be 
required for California to meet its 80% GHG reduction target (Executive Order S-3-05). These 
studies further show that even if low carbon technologies can be scaled up to near technical 
potential, additional savings will be required from conservation, or else entirely new 
technologies will need to be developed, likely at considerable cost. Unlike changes in technology 
and infrastructure, which require heavy investments and long lead times, behavior change 
programs can offer quick and potentially low-cost solutions (Dietz et al. 2009).  
 
Efforts to encourage pro-environmental behaviors have been largely limited to small-scale 
projects that target actions for specific populations (McKenzie-Mohr 2013). One approach, 
providing comparative feedback via home energy reports, has reached large scales; however, 
savings have been modest, typically between 1-2% (Ayres, Raseman, and Shih 2012; Allcott 
2011). Low-cost, highly scalable intervention models that achieve deeper savings for large, 
diverse populations are needed to ramp up greenhouse gas reductions.  
 
This study developed a pilot inter-city greenhouse gas reduction program between eight 
participating California cities. This project serves as a living laboratory to test new approaches to 
engage California residents and communities in climate action. This effort supports the goals of 
the California Global Warming Solutions Act (AB 32); as specified in the California Air 
Resources Board’s AB 32 Scoping Plan, voluntary actions are an essential component of the 
state’s GHG reduction portfolio.  

The primary goals of this study were to: 1) design and implement a pilot inter-city greenhouse 
gas reduction competitions between California cities, 2) administer a research survey to collect 
participant demographic information, attitudes, motivations, adoption of low carbon behaviors 
and other information, and 3) track and evaluate results.  

The study tracked self-reported monthly natural gas and electricity consumption by ~900 total 
participants who recorded their monthly usage an average of five months per household. We use  
a quasi-experimental design to compare participants’ monthly energy usage with participants 
who joined the program at a later date and estimated total program-wide savings of electricity, 
natural gas and greenhouse gas emissions.  
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Participants were asked to complete a research survey, including questions on their values, 
attitudes, motivations, commitment to sustainable lifestyles, and demographic characteristics. In 
order to understand the effectiveness of the program to engage different population segments we 
compared points earned by households to responses from the research survey. As described in 
detail below, participants earned points earned for: 1) having lower energy consumption and 
motor vehicle usage than similar California households, 2) lowering energy usage and motor 
vehicle usage over time, and 3) taking simple, one-time actions.  

 

6.2. Methods and Materials 

6.2.1. Program Overview 

Any California city interested in the program was encouraged to apply and participate. 
Applications were accepted from February 1, 2012 through February 29, 2012. Interested cities 
were required to submit a letter of support from a city manager or equivalent stating the city's 
commitment to participate in the program. The first six cities that submitted letters of support 
signed by city managers received $1,000 in seed money. The city had the option of designating a 
community-based organization (CBO) to administer the program. If a CBO was in charge of 
administering the program locally, a letter of support from this organization was also required. 

The California Air Resources Board, U.C. Berkeley and CoolCalifornia.org partner, Next Ten, 
announced the program and advertised on institutional email lists and a list of city sustainability 
officers throughout the state. Ten cities completed the application process by the required date; 
however, two cities, Gonzales and Santa Cruz, dropped out prior to the start of the competition 
due to staffing constraints, leaving eight cities in the pilot competition: 
 

• Chula Vista 
• Citrus Heights 
• Davis 
• Pittsburg 
• Pleasanton 
• San Jose 
• Sacramento 
• Tracy 

Theses cities reflected a demographically diverse population with a range of population sizes as 
well as different levels of capacity and experience with community climate action. All cities had 
recently completed climate action plans that called for some level of engagement with residents. 
In many cases the Challenge was the city’s first engagement with residents on this issue. 
 
The CoolCalifornia Challenge (“the Challenge”) management team at U.C. Berkeley worked 
directly with city program managers in each city, providing supporting resources, including: 1) 
marketing information (brochures, videos, market segmentation research, graphically-enhanced 
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email communication, etc.), 2) survey results (in aggregated form), 3) a calendar of monthly 
themes and suggested activities, 4) community-based social marketing workshops (online during 
the Qualifying Round and in-person and online during Finalists Round), and day-to-day support. 
Other resources were contributed by cities depending on their needs and capabilities, including 
staff and volunteer time, print materials, coordination of local events, communication with 
participants via the Challenge software and local program management.  
 
6.2.1.1. Target Population 

Based on a California-focused population segmentation study (Opinion Dynamics 2009) the 
research team anticipated that two generalized groups would be primarily interested in the 
Challenge. The first group, called “leading achievers,” would be largely well-educated, 
politically liberal homeowners who are already very knowledgeable and committed to energy 
efficiency and climate change, and who would be good candidates for large investments and 
deep conservation practices. The second group, called “striving believers,” is younger, more 
urban and also politically liberal, but due to competing interests, lower incomes and renter status, 
has not made significant investments in energy efficient technologies. This group is more 
influenced by peers, highly connected to social media, and more motivated by fun interventions 
that improve social interactions. Together, these two groups represent nearly 50% of California’s 
population. A third group, called “practical spenders,” is older, more conservative and also quite 
savvy about energy efficiency, but would be less motivated by environmental appeals and not as 
likely to join the program.  

Cities were also encouraged to foster engagement of more specific population segments via the 
creation of “EcoTeams,” or self-organizing groups of participants. EcoTeams could be formed 
by schools, churches, city offices, community-based organizations or other groups interested in 
competing against similar teams. EcoTeams would know the best way to communicate with and 
motivate their more specific populations.  
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6.3.1.2. Timeline  

 
Figure	
  22.	
  Timeline	
  of	
  the	
  CoolCalifornia	
  Challenge	
  Pilot	
  Competition	
  

 
The Challenge started on April 1, 2012 and ran through May 30, 2013. The month of April 2012 
was called the “warm up month,” which was designed to give cities the opportunity to become 
familiar with the software and to start formulating their plans for participation in the Challenge. 
During this period participants were able to sign up and start earning points in the CoolCalifornia 
Challenge.    
 
The “Qualifying Round,” which ran from May 1 through July 31, 2012, was designed to 
encourage broad participation of California communities in the program and to select the most 
dedicated cites to compete to become the “Coolest California City.” At the end of each month of 
the Qualifying Round the city with the most points was deemed a “Finalist” and awarded 
$10,000 in “seed money.”     
 
The CoolCalifornia Challenge provided in-kind and financial support to cities participating in the 
program. The first six cities to apply received $1,000 in seed money. Each winner of the 3-month 
Qualifying Round was also to receive $10,000. Seven cities in the Pacific Gas & Electric 
Company (PG&E) territory received additional seed money of $2,500 each from PG&E. The 
City of Chula Vista was supported separately via contracts with their local utility, San Diego Gas 
& Electric Company.   
 
The City of Davis became the first finalist at the end of May, followed by the City of Sacramento 
at the end of June. The remaining cities competed for the last finalist spot during the month of 
July. The competition between the cities of Tracy and Chula Vista was extremely intense during 
the final days of the month, with each city trading places on the leaderboard multiple times. By 
midnight of July 31, both teams had earned almost the same number of points, within less than 
0.5%. Both cities agreed to declare a tie and share the prize money ($5,000 each). The cities of 
Davis and Sacramento also agreed to have an additional city as a finalists, although there was 
some concern that four cities would spread staff resources and coordination more thinly.  
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The “Finalists Round” ran from August 1, 2012 through April 30, 2013; however, cities were 
given until May 30 to enter energy bills and vehicle odometer readings for the month of April, 
resulting in a program ending date of May 30, 2013. The total program duration was 13 months, 
including the warm up month of April 2012, plus additional month of May 2013 to finish 
entering data. The program collected more than one year of data since participants were able to 
enter utility data and vehicle odometer readings dating back to March 1, 2012. The Finalists 
Round was designed to function similarly to the original competition design, which had three 
cities collaborating to implement a nine-month program (see Appendix A.5 for a summary of 
program design changes from the original research contract).  
 
At the end of the one-year pilot, the City of Davis had earned the most points and was officially 
declared the “Coolest California City” at an awards ceremony at a California Air Resources 
Board meeting in Sacramento. The city of Chula Vista came in a close second place and the city 
of Tracy was third place. Chula Vista and Tracy were each awarded recognition as a “Cool 
California City.” 
 
6.2.1.3. Software and Points Structure 
 
U.C. Berkeley developed a sophisticated online software platform (see Appendix A.9 for 
screenshot) allowing participants to create accounts, log electricity and natural gas bills, add 
motor vehicles and track odometer readings, join and manage teams, invite friends, share stories, 
take pledges, track progress and earn points for themselves, their teams and their cities. The 
software also included administrative accounts for city program managers allowing them to send 
formatted messages to their participants, administer raffles, and manage Ecoteams.  
 
Developing the software proved to be much more time consuming, costly and complicated than 
originally envisioned in the research contract, which did not include funding for software 
development. Rather than try to extensively modify and repurpose an existing software tool 
developed for the purpose of calculating household carbon footprints 
(CoolCalifornia.org/calculator), U.C. Berkeley hired a small team of highly skilled computer 
programming students to build a new website from scratch and hired a fulltime staff person to 
design and manage the software development. The software launched on April 2, 2012 (a day 
after the intended start date due to a software bug) with basic functionality allowing users to 
create accounts, track energy data, earn points and monitor their city’s progress on a scoreboard. 
New features were rolled out over the course of the yearlong program, as the user interface 
improved and bugs were tracked and resolved on an ongoing basis.  
 
Participants earned points for the following:  
 
1. KUDO POINTS for signing up & taking simple actions: Participants received 100 points for 
signing up and additional points for simple actions like filling out an online survey (100 points), 
uploading a photo (50 points), and inviting friends (20 points for every person who signs up). 
 
2. GREEN POINTS for having carbon footprints from home energy and motor vehicles that are 
lower than similar households: Participants earned one point per pound of CO2 lower than a 
benchmark value for similar households. Similar households were defined as having the same 
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number of people of the same ages living in the same city.  Benchmark electricity, natural gas 
and vehicle miles were calculated for each city and for each household type by number of 
household members in each age group.  
 
The benchmarking methodology for “similar households” is described in detail in (Jones and 
Kammen 2014), and summarized here. We use existing national household survey data to 
develop econometric models of demand for household electricity, natural gas, fuel oil and 
vehicle miles traveled. Independent variables used to predict household electricity, natural gas 
and other household heating fuels in the Residential Energy Consumption Survey (n = 4363) 
include energy prices, heating fuel type, heating and cooling degree days, structure of homes 
(number of rooms, percent single-detached, year home built), demographic information (income, 
number of household members, age of householder, race), home ownership, percentage rural or 
urban, Census divisions, and U.S. state. Predictive variables for motor vehicles miles traveled 
(VMT) in the National Household Travel Survey (n = 11 744) include number of vehicles 
owned, fuel prices, average time to work, percentage of commuters who drive to work, 
demographic information (income, number of household members, race), number of food and 
recreation establishments in the zip code, population density, Census region, and U.S. state. 
 
Figures 23, 24 and 25 show the benchmark monthly electricity, natural gas and vehicle miles 
traveled estimates for each of the Challenge cities. Monthly electricity and natural gas estimates 
were developed using local 30-year average heating and cooling degree days (NCDC 2013).  The 
model somewhat overestimates electricity consumption for California households (likely due to 
California’s stronger energy codes that are not well predicted by the model); however, this only 
serves to give all Challenge participants more points than they would with a lower benchmark 
and does not affect the results of this study.   
 
 

 
Figure	
  23.	
  Benchmark	
  kWh	
  Electricity	
  per	
  Household	
  by	
  City	
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Figure	
  24.	
  Benchmark	
  Therms	
  Natural	
  Gas	
  per	
  Household	
  by	
  City	
  

 

 
Figure	
  25.	
  Benchmark	
  Household	
  Vehicle	
  Miles	
  Traveled	
  by	
  City	
  

 
3. BONUS POINTS for beating past performance: Participants received bonus points for 
reducing energy and transportation carbon footprints compared to their household’s performance 
in previous months.  For example, if a household was 20% below similar households in March 
and 10% below similar households in April, the software calculates an expected personal 
benchmark of 15% below for May (the average of previous months). For every pound of CO2 the 
household reduced below this personal benchmark they received bonus points equivalent to three 
times the value of CO2 saved. These bonus points gave participants additional incentive to lower 
emissions beyond their reductions in previous months.  
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6.2.1.4. EcoTeams 
 
During the original program design it was envisioned that most active participants would be 
organized into teams of 5-7 participants, called EcoTeams. Each EcoTeam would be responsible 
for enforcing the rules and expectations of the program and verifying the activities of its 
members. Participants who were not part of EcoTeams would have fewer opportunities to earn 
points, as agreed upon by a vote of city program managers in participating cities.  
 
Unfortunately, creating the team features in the software proved more difficult than originally 
anticipated and this feature was not launched until February 2013. Teams did not have additional 
opportunities to earn points, as originally envisioned; however, there were some added benefits 
to joining teams, including team pages, team rankings, intra-city competitions between teams 
with natural rivalries (like city departments) and special recognition for the teams with the most 
points as of April 22, 2013, Earth Day. 
 
6.3.1.5. Strategies and Activities Employed 
 
The Challenge employed a number of strategies common to community-based social marketing 
(McKenzie-Mohr 2012) and behavior-based energy reduction programs (Abrahamse et al. 2005), 
including:  
 

• Feedback – letting participants know how well they are doing. See (Delmas, Fischlein, 
and Asensio 2013) for a recent review of feedback studies. Participants received 
comparative feedback, showing their rank in the program as an individual and as a team. 
They also received points based on their usage compared to similar households. 
Participants could also receive personalized feedback, with recommendations to reduce 
their carbon footprints by using the CoolCalifornia.org carbon footprint calculator and 
receive Kudo Points for uploading a screenshot of their results.  

 
• Norms –information on how others like them behave (descriptive norms) and what 

behaviors are expected by peers (subjective norms) (Goldstein, Martin, and Cialdini 
2008). Participants regularly received communication from local program managers 
encouraging them to join with others in their community (a descriptive norm) and why 
they should participate (a subjective norm). Program newsletters also frequently 
highlighted California-specific descriptive norms, e.g., statistics on the percentage of 
Californians who recycle, compost and support energy efficiency, and how many points 
were earned by participants in their community. 

 
• Social Diffusion. Social diffusion happens when individuals share their experiences 

through social connections (McKenzie-Mohr 2012). The CoolCalifornia Challenge 
tapped directly into established social networks in communities and indirectly through 
word of mouth, the media, email and other communications channels.  

 
• Local leadership and capacity building. The success of the program depended largely on 

the ability of cities to organize a network of community leaders empowered to carry out 
the program. Local messengers understood local values and attitudes and were in a much 
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better position to recruit, organize and motivate people they know than the organizers 
operating at the city level (Gershon 2009).   

 
• Commitments and Goal Setting –Participants were encouraged to sign up and commit to 

regularly tracking energy and vehicle usage. Several goals were incorporated into the 
program, including becoming a “Cool California City” by entering the finalists round and 
becoming the “Coolest California City” for winning the competition. Participants were 
not given individualized goals for energy reduction, although this has also been shown to 
be an effective strategy (Abrahamse et al. 2005), but they were given a total collective 
goal of reducing 500,000 pounds of CO2. 

 
• Incentives. The CoolCalifornia Challenge provided recognition for participants’ 

collective efforts as a city through their ranking in the program, and through participation 
in teams. Cities also had the option of using the software to select and contact raffle 
prizewinners, with each point counting as a raffle ticket. Raffle prizes included energy 
efficient products and gift cards to local stores or restaurants. One city, Chula Vista, also 
used seed funding for LED holiday lights and distributed them to Challenge participants 
in exchange for conventional holiday lights.  

 
• Persuasive messaging. There are many strategies of effective communication (Goldstein, 

Martin, and Cialdini 2008). The CoolCalifornia Challenge team provided workshops, 
resources and one-on-one support to city program managers and community leaders on 
persuasive messaging, including the use of vivid imagery, stories, peer-to-peer learning, 
population segmentation, normative messaging and other techniques.  

 
In addition to implementing these strategies in the software and email communications, U.C. 
Berkeley researchers provided workshops on community-based social marketing to finalist cities 
(Davis, Sacramento, Chula Vista and Tracy) and worked with these cities to develop appropriate 
implementation strategies during the Finalists Round. During these workshops finalist cities 
learned basic CBSM concepts, including 1) identifying the most promising behavior to target, 2) 
analysis of barriers and benefits of taking those actions, 3) developing intervention strategies, 4) 
piloting, and 5) scaling up interventions. Each city was encouraged to develop its own unique 
interventions, targeting specific actions for different populations within each city. While cities 
were not able to fully implement all CBSM steps, they did develop their own unique 
interventions. For example, the city of Sacramento developed the “Cut Your Cubes” campaign 
including a downtown sustainable practices scavenger hunt exclusively for Challenge 
participants, the city of Chula Vista conducted a holiday lighting exchange and the city of Davis 
began a 3-year household carbon footprint reduction campaign based on CBSM principles.  
 

6.2.2. Research Surveys 
 
All participants were asked to voluntarily complete a research survey during and after the 
competition. The survey contained four sections: demographic information, attitudes, lifestyle 
and EcoTeams. A full list of questions is available as Appendix A.2 in this report. As a small 
reward and incentive, participants earned 100 points for completing the survey. Three hundred 
thirty-four participants successfully completed the online survey. Six months following the end 
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of the program participants were asked to log into the Challenge software and take a second 
survey that included additional questions evaluating their experience in the program (A.3). Sixty-
three participants completed the second survey.  
 

6.3.3. Experimental Design 
 
The vast majority of behavior change programs are opt-in and therefore do not have the benefit 
of a true control group since those who opt-in may be different in fundamental ways than those 
who have not opted in. In these cases, the best option is to delay the treatment to a randomly 
selected portion of participants for use as a control group. In the absence of a waitlist or delayed 
control, a Variability in Adoption (VIA) design is considered the next best option for quasi-
experiments (Opinion Dynamics/Navigant 2012; DNV-GL 2014). In VIA models, participants 
who opt-in to a program later are compared to participants who opt-in earlier. For example, the 
energy use of the control group prior to joining the program may be compared to energy use of 
program participants during the same time period. The two groups should be carefully assessed 
for similarities since the control group serves as a presumed counterfactual of the treatment 
group had they not joined the program. 
 
We used a VIA model to evaluate electricity and natural gas usage. Participants were able to earn 
points for reporting energy usage dating back to the beginning of the program, even if they had 
joined late in the program. This aided in the data collection for the project as well as allowed 
participants to enter multiple bills at one time. Figure 26 shows the monthly number of electricity 
and natural gas reports that were available as a treatment group and as a control group using this 
method. Since participants were able to join at any point during the 13-month program, the 
number of households in the treatment group and control group changed on a rolling basis. The 
treatment group submitting reports in any given month typically ranged between 150 and 250 
households. The size of the control group ranged between 55 and 275 participants prior to 
October 2012, but dropped to under 30 households thereafter, making comparison between the 
two groups at the end of the program far less accurate.   
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Figure	
  26.	
  Size	
  of	
  Treatment	
  and	
  Control	
  Groups 

Assessment of Similarities Between Control and Treatment Groups 
 
In order to evaluate similarities and differences between the treatment and control groups we 
combined survey data, which included questions on demographics and attitudes, with self-
reported monthly energy data for the two groups. Of the 650 households completing at least two 
monthly energy data reports, 225 also filled out the research survey, providing reasonable 
confidence (+/- 5% margin of error at 95% confidence) that the household survey results 
represent the larger group of households providing energy data. However, it is important to keep 
in mind that the size of the control group is very small (under 30) after October 2012 and number 
of households who also completed the research survey for those months is smaller still. The 
discussion below therefore only refers to data from March 2012 through October 2012.  
 
As shown in Figure 27, household size, age, gender and income were very similar between the 
treatment and control groups throughout the reporting period. Of all of these characteristics, 
differences in average household size would be particularly problematic; fortunately, there is a 
very high degree of correlation between the two groups. 
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Figure	
  27.	
  Household	
  Size,	
  Age,	
  Sex	
  and	
  Income	
  of	
  Treatment	
  and	
  Control	
  Groups	
  

 
Political party affiliation and level of education varied somewhat between the control and 
treatment groups (Figure 28). These characteristics have been shown to be strongly correlated 
with views on climate change (Maibach, Roser-Renouf, and Leiserowitz 2009), with more 
conservative and less educated households being less likely to believe in or be concerned about 
anthropogenic climate change. The treatment group is somewhat more conservative and less 
educated and may therefore be less motivated to reduce greenhouse gas emissions than 
households the treatment group, potentially weakening the experimental design. An alternative 
explanation, however, is that fraction of households living in more or less educated and 
politically liberal cities, in either the treatment or control group, changes over time. Thus, 
controlling for city could reduce the differences.  
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Figure	
  28.	
  Political	
  Party	
  Affiliation	
  and	
  Graduate	
  Degree	
  Attainment	
  of	
  Treatment	
  and	
  Control	
  Groups 

As shown in Figure 29, the fraction of Davis households in the control and treatment groups 
varies to a similar degree as the variables shown in Figure 26. Davis participants are also much 
more likely to have a graduate degree than other cities (53% compared to 25%, on average) and 
are also more politically liberal. This lends evidence that the differences between the control and 
treatment group may be at least partially due to the composition of cities in each group over time.  
 

 
Figure	
  29.	
  Graduate	
  Degree	
  by	
  City	
  and	
  Fraction	
  of	
  Households	
  from	
  Davis	
  

Figure 30 shows the number of households reporting electricity in each city for every month of 
the competition for both the treatment and control groups. During the first few months the 
number of reporting households in the treatment group grew to saturation level in about August, 
after which monthly reporting remained fairly constant at about 500 households per month. The 
fraction of households from each city in the treatment group stays fairly constant throughout the 
program period, but the fraction of households from each city varies considerably for the control 
group. This is shown best in Figure 31, which shows the same data as in Figure 30 but by 
percentage. Cities not only have different compositions of political affiliation and educational 
degree attainment, but differences in weather, energy policies, culture and other characteristics, 
so controlling for city is critical to the experimental design.  
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Figure	
  30.	
  Number	
  of	
  Households	
  Reporting	
  Electricity	
  in	
  Treatment	
  Group	
  by	
  City 

 

 
Figure	
  31.	
  Fraction	
  of	
  Households	
  in	
  Treatment	
  and	
  Control	
  Groups	
  by	
  City	
  

Due to the very small sample size of households completing both the research survey and energy 
reports in each city it was not possible to examine the composition of control and treatment 
groups for each city; however, as expected, simply removing Davis households from the analysis 
does considerably reduce differences between the two groups. See Figure 32, which compares 
educational degree attainment with and without Davis households. Households in the treatment 
group for the remaining cities were somewhat more likely to have higher education than the 
control group; however, controlling for all cities may further minimize these differences, as well 
as differences in political party affiliation.  
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Figure	
  32.	
  Graduate	
  Degree	
  Attainment	
  with	
  and	
  without	
  Davis	
  

 
 
To account for differences between cities, we adjust each monthly household energy report as 
follows: 
 
EUkt = REUkt / ( AEUct / AEUt ) 
 
Where, 
 
EUkt is the energy use (electricity or natural gas) for household k in month t 
REUkt is the reported energy use for household k in month t 
AEUct is the average energy use of all participants reporting in city c in month t 
AEUt is the average energy use of all program participants in month t 
 
This approach normalizes average monthly energy use in each city to the average monthly 
energy use in all cities, for both the control and treatment groups, thus accounting for differences 
in weather, energy policies, housing stock, household characteristics and other factors that affect 
energy usage between cities.   
 
Given the similarities in most demographic variables, and the additional control for location, we 
assume the control group acts as a counterfactual for the treatment group had they not joined the 
program. Nonetheless, it does make sense that the most motivated participants would join earlier, 
and less motivated participants would join later. This is a fundamental limitation with the VIA 
model that is not entirely possible to control for in this study. Given the small sample size of 
households completing survey responses and reporting energy in each city, multivariate 
regression techniques (see Opinion Dynamics, 2009; and DNV-GL 2014) were not possible to 
further align the control and treatment groups beyond the normalization by city.   
 
We have limited our impact evaluation to electricity and natural gas. While several hundred 
participants also regularly recorded odometer readings of their vehicles, the majority of 
households only tracked one vehicle, particularly during the first months of the program. Since 
most households have more than one vehicle, we assumed this was a reporting error (and also a 

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*
+,-
$!
($
#

./
+01$
!(
$#

)*
2$
!(
$#

345
6$
!(
$#

341
2$
!(
$#

.4
74
89$
!(
$#

:6
/96
;<
6+$
!(
$#

=,
9><
6+$
!(
$#

?>
@6
;<
6+$
!(
$#

A6
,6
;<
6+$
!(
$#

3*5
4*
+2$
!(
B#

C6
<+4
*+2
$!
(B
#

)*
+,-
$!
(B
#

./
+01$
!(
B#

"#D+*E4*96#A67+66#F#.11#G0H68#

I+6*9;659# G>59+>1#

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*
+,-
$!
($
#

./
+01$
!(
$#

)*
2$
!(
$#

345
6$
!(
$#

341
2$
!(
$#

.4
74
89$
!(
$#

:6
/96
;<
6+$
!(
$#

=,
9><
6+$
!(
$#

?>
@6
;<
6+$
!(
$#

A6
,6
;<
6+$
!(
$#

3*5
4*
+2$
!(
B#

C6
<+4
*+2
$!
(B
#

##.
/+0
1$!
(B
###

"#D+*E4*96#A67+66#F#J09->49#A*@08#K>486->1E8#

I+6*9;659#5>#A*@08# G>59+>1#5>#A*@08#



   103 

problem with the feedback initially provided by the software to reduce this error) so we were not 
able to accurately evaluate reductions in household motor vehicle usage. It should be noted 
though that greenhouse gas emissions from motor vehicles are about three times larger than 
household energy GHG emissions in California (Jones and Kammen 2011) so total GHG 
reductions due to the program are likely considerably higher than those reported here. 

 

6.2.4. Supplementary Interviews 
Several months after the end of the program, city program managers were asked to be 
interviewed about their city’s experience participating in the program. The interview included 
questions on their city’s motivations for joining the program, the resources they had at their 
disposal to run the program, their evaluation of each of the main program activities, their opinion 
on the outcome and results, and their recommendation for future programs (Appendix A.4). Six 
city program managers completed the interviews.  
 
 
  



   104 

6.3. Results 

6.3.1. Participation 
 
Figure 33 shows level of participation throughout the 13-month program as measured by number 
of new participants and number of monthly electricity reports. The vast majority of new 
enrollments (67%) joined during the Qualifying round, April 1 through July 31. Participation in 
the program, as measured here by the number of times households reported electricity, first 
peaked in May, when the first finalist city, Davis, was announced. Sacramento was then able to 
secure the second spot at the end of June without considerable competition and with somewhat 
lower overall level of participation. Chula Vista and Tracy engaged in a very intense competition 
for the last spot at the end of July. As was noted earlier, these two cities were almost exactly tied 
at the end of July and were both declared finalists in the program. There was another boost in 
enrollment in the first few months of the Finalists Round (fall 2012), but starting in January 2013 
new sign ups were minimal. Participation was lowest in winter months when there were no 
program deadlines. The largest peak in participation was the last month of the program, when 
33% of electricity reports were recorded. Based on this evidence it is clear that the timing of the 
program deadlines played a critical role in participation levels throughout the program.  
 

 
Figure	
  33.	
  Participation	
  Levels 

 

6.3.2. Energy and GHG Reductions 
 
Electricity  
From April through October 2012, when the control group contained a sufficient number of 
subjects for a reasonable control, Challenge participants used 14% less electricity than the 
control group (Figure 34). During the entire 13-month program the treatment group used 19% 
less electricity than the control group; however, due to the limited sample size of the control 
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group after October we consider the lower estimate of 14% to be a more realistic estimate of 
total annual program savings. Savings were greatest during peak periods in summer and winter. 
Curiously, electricity demand was slightly higher in December and January than in August, the 
hottest summer month, for both the treatment and control groups. It is unclear why this occurred, 
but it may be due to additional electric space and water heating during the coldest months and 
more days spent at home during holidays. Electricity consumption was very similar between the 
two groups in March 2012, one month prior to the start of the program, and through the first 
three months when households were signing up for the program.   
 
 
 
 
 

 
Figure	
  34.	
  Electricity	
  Consumption	
  of	
  Treatment	
  Group	
  vs.	
  Control	
  Group	
  

Electricity consumption varied considerably by city and also, of course, between households 
within cities (see Figure 35 and Appendix A.1 for summary statistics). Since the program was 
opt-in, most participants did not enter data for the first few months of the program so the sample 
size of each city is quite small until about July or August when each city consistently had over 
100 entries per month (Figure 33). It is therefore not possible to evaluate the overall trend for 
each city. Even if this were possible it is important to note that increasing consumption would 
not be an indication of lack of a program effect since consumption increased considerably more 
for the control group than for program participants and the data presented below are not 
normalized by weather.  
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Figure	
  35.	
  Average	
  Monthly	
  Electricity	
  Consumption	
  by	
  City	
  

 
Natural Gas 
 
In contrast to electricity, participants demonstrated essentially no savings in natural gas 
consumption (Figure 36). Between April and October, when the size of the control group was 
between 55 and 275 households, both the treatment and control groups used exactly 97.8 therms 
and monthly usage was quite similar with no clear pattern. After October the size of the 
treatment group falls to below 30 households, so we are not able to evaluate usage with any 
statistical confidence. For comparison purposes we have included the California benchmark 
value, as computed by the software (Jones and Kammen, 2014) and adjusted for average 
California consumption of 6,992 kWh/yr (U.S. Energy Information Administration 2005). 
Natural gas consumption in summer months was about 50% below that of average California 
households with similar location, size and age of householder, but 20% higher during the winter 
heating period. The benchmark is a modeled result and not a statewide average, but it does help 
confirm that natural gas was likely not reduced in winter months (see the Discussion and 
Conclusion sections for potential reasons why there were no savings of natural gas). While there 
are no measurable savings in natural gas, the close alignment between the control group and the 
treatment group through October 2012 suggests that the experimental design is sound and 
calculated savings in electricity are realistic.    
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Figure	
  36.	
  Natural	
  gas	
  consumption	
  of	
  treatment	
  and	
  control	
  group,	
  and	
  California	
  benchmark	
  

 
Total Energy and CO2 Savings 
The analysis above considers only participating households that entered electricity or natural gas 
reports in any given month. Multiplying monthly electricity savings in each month by the 
number of reporting households, summed over the 13 months of the program translates to 183 
MWh of electricity savings, equivalent to the average annual electricity consumption of 23 
California homes, and about 50 metric tons of CO2. This does not include any savings for active 
households when they did not report electricity or any potential savings from households not 
reporting electricity. It also does not include any potential savings from motor vehicles, which 
were not calculated for this study. An alternative method of determining CO2 savings in real time 
during the program was to divide Bonus Points by 3 to account for reductions below 
participants’ performance in previous months. Using this methodology we calculated a program-
wide savings of about 495,000 lbs (227 metric tons) of CO2, approximately reaching the stated 
goal of 500,000 announced several months prior to the end of the program.  
 

6.3.3. Survey Results 
 
In the figures below we provide descriptive results from the survey responses and compare 
points earned by different groups of subjects.  
 
6.3.3.1. Demographic Characteristics 
 
Nearly 50% more women completed the research survey than men (Figure 37). Online Challenge 
accounts were linked to one email address per household. We therefore assume that the person 
who completed the research survey was also likely to be responsible for administering the 
program within the household. Households in which men completed the research survey earned 
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an average of 33% more points than women who completed the survey; however, in total women 
earned 40% more points than men because women represented more of the participating 
households. Only 14% of participants who completed the survey were between the ages of 18 
and 34. While this age group was initially an important target audience (mostly “striving 
believers”), young adults were more difficult to recruit into the program. Young people also 
scored, on average, less than half the points of participants in other age groups. This may partly 
be explained by the large fraction of young people who are likely renters, but it also may reflect 
lower levels of interest and participation generally. All other age groups earned a similar amount 
of points.  
 

 
Figure	
  37	
  Points	
  Earned	
  by	
  Sex	
  and	
  Age	
  of	
  Respondent	
  

Figure 38 shows participation across income levels and education attainment. Participants were 
well represented across income levels and participants were only slightly more likely to earn 
points at higher incomes than at lower incomes. Education had a much stronger impact on points, 
with respondents who hold graduate degrees earning more than two times as many points as 
participants without a college degree.  
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Figure	
  38.	
  Participation	
  and	
  Average	
  Points	
  by	
  Income	
  and	
  Education	
  

Figure 39 shows participation levels and average points earned per household by level of 
conservatism and political party affiliation. As expected, most participants were politically 
liberal (76%) and Democrats (60%); however, 12% of those who answered this question self-
identified as conservative and 14% as Republican. Somewhat surprisingly, conservatives and 
Republicans earned only about a third fewer points, on average per household, than liberals and 
Democrats.   
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Figure	
  39.	
  Participation	
  and	
  Average	
  Points	
  by	
  Political	
  Orientation	
  and	
  Political	
  Party 

A recent ARB-funded study (Delmas 2013; Chen, Delmas, and Kaiser 2014) providing energy 
feedback to residents of family student housing found that households with children reduced 
more energy than households without children. We were not able to replicate this finding in the 
Challenge (Figure 40); households without children earned more points than households with 
one or more children. However, in the previous ARB study, this finding was only robust in cases 
where households were receiving information about the health impacts of air pollution associated 
with electricity use so results are not directly comparable.  
 

 
Figure	
  40.	
  Number	
  of	
  Households	
  and	
  Points	
  per	
  Household	
  by	
  Number	
  of	
  Children	
  at	
  Home 

 
 
6.3.3.2. Lifestyle & Behaviors 
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Most participants heard about the program from the city government or another participant, 
friend or colleague (Figure 41). This suggests that social networks and social diffusion were 
effective strategies to encourage program participation. While most survey respondents only 
checked one box, many noted that they heard about the program from multiple sources. It is 
possible that many respondents in fact heard about the program from multiple sources, but 
simply checked one box.    
 

 
Figure	
  41.	
  How	
  Participants	
  Heard	
  About	
  the	
  Challenge 

Respondents demonstrated strong pre-existing participation in low carbon lifestyles (Figure 42). 
Over 60% of respondents ride their bicycle at least once a week during nice weather and about 
40% ride their bicycles even when the weather is not nice. About 50% of participants compost, 
presumably mostly in their own yards since curbside food waste collection for municipal 
composting is not available in participating cities. Sixty percent of participants eat a vegetarian 
meal at least once a week. Thus, the program seemed to attract households who have largely 
already taken a number of actions that the program recommends prior to joining.  
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Figure	
  42.	
  Low	
  Carbon	
  Practices	
  of	
  Participants	
  

 
Far fewer respondents have purchased energy efficient products or appliances (Figure 43). While 
over 70% have purchased energy efficient light blubs, only 20% reported purchasing an energy-
efficient appliance and less than 10% had insulated their attic, weather-stripped their home or 
installed an energy-efficient furnace, water heater or air conditioner.  
 
 

 
Figure	
  43.	
  Energy	
  Improvements	
  Taken	
  by	
  Households	
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Over 30% of respondents owned a vehicle that gets over 30 miles per gallon and 15% owned 
either a hybrid electric, plug-in hybrid or all electric vehicle. Fifteen respondents even reported 
owning either an electric bicycle or a neighborhood electric vehicle. (Figure 44) 
 

 
Figure	
  44.	
  Ownership	
  of	
  Fuel	
  Efficient	
  and	
  Electric	
  Vehicles	
  

 
 
6.3.3.3. Opinions and Attitudes 
 
About 90% of respondents reported being either very well informed or fairly well informed 
about the causes of global warming and “ways in which we can reduce global warming” (Figure 
45). Those who reported being very well informed earned over twice the number of points per 
household than those who were less informed about the causes of global warming and nearly 
three times as many points than those who were not well informed about personal actions to 
reduce global warming.  
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Figure	
  45.	
  Participation	
  and	
  Points	
  by	
  Level	
  of	
  Information	
  about	
  Global	
  Warming	
  

Nearly 80% of respondents believed global warming is mostly caused by humans, while nearly 
10% of respondents believed global warming was caused mostly by natural causes or that it was 
not happening (Figure 46). Surprisingly, those who were skeptical of human-induced global 
warming still earned about half as many points in the Challenge as those were convinced, 
reflecting a fairly high level of engagement in the program despite a clear lack of a climate 
change related motivation.  
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Figure	
  46.	
  Belief	
  in	
  Human-­‐Induced	
  Global	
  Warming	
  

Most participants either agreed or strongly agreed that their actions “can make a difference to 
reduce global warming” (Figure 47); however, even those who did not agree or only somewhat 
agreed earned almost as many points per household.    
 

 
 

Figure	
  47.	
  Belief	
  that	
  Their	
  Actions	
  Make	
  a	
  Difference	
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6.3.3.4. Primary Motivations and Values 
 
Participants were asked to rate the importance of joining the Challenge from a list of 
motivations. Responses (Figure 48) reflect primarily altruistic and intrinsic motivations. Topping 
the list, with over 90% of respondents rating as at least somewhat important, were “improving 
where you live,” “supporting organizations you care about” and “making an environmental 
statement.”  “Learning about new technologies” and “being part of something important” may 
also be considered intrinsic motivations, reflecting pleasure in understanding and participating in 
climate action. Extrinsic motivations of saving money and earning discounts also rated high; 
however, less than a third of participants ranked winning prizes as either important or very 
important. Living in a “Cool California city” and earning recognition for their city was either 
important or very important for over half of respondents.  
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  Joining	
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Figure 49 compares motivations of participants based on different demographic characteristics, 
political party affiliation and belief in human-induced global warming. Answers were coded on a 
Likert scale from 0 (not important at all) to 4 (very important). There is remarkable consistency 
in the strength and rank of the top motivations across age, gender, income and education, 
although minor differences may be noticed. Young, less educated and lower income participants 
(who are often the same people) expressed slightly more interest in learning how to save money, 
receiving discounts and, somewhat more noticeably, winning prizes. “Having fun” rated slightly 
higher for participants under 35, although only marginally (3.1 vs 2.7). “Getting to know your 
neighbors” was slightly less important for men (2.3 vs. 2.7). Republicans and conservatives 
(combined as a single category) and “climate change skeptics” (lacking a belief in anthropogenic 
climate change) were also primarily motivated by helping their community and supporting 
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organizations they care about, although saving money was the highest-ranked motivation, 
making an environmental statement was not a top motivation, and making a political statement 
was not important (and potentially off-putting) for conservatives, as well as for less educated 
participants. Somewhat surprisingly, participants who signed up for the program but did not earn 
any points reported somewhat higher motivations than those who earned over 5,000 points (on 
average of 2.9 vs 2.7). 
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Participants were also asked about their values, which are thought to filter how information is 
perceived and frequently trigger an emotional response when activated (Schwartz 1994). We 
used the consolidated Schwartz Values Survey (Lindeman and Verkasalo 2005), which includes 
a common list of universal values shared across cultures (see Appendix A.2 for a description of 
terms). Again, we see remarkable consistency between individuals, with universalism, self-
direction, security and benevolence as the top values for all groups, except conservatives, for 
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whom tradition is also a core value. Power was at the bottom of the list, followed by prestige and 
hedonism, although hedonism (described as seeking pleasure) was an important value for people 
under 35. It is noteworthy that while hedonism is often a strongly held value for youth, “having 
fun” was not a primary motivation for joining the Challenge, perhaps indicating that they felt the 
program would not really be fun (although they were still motivated for altruistic reasons). See 
Figure 50. 
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6.3.4. Participant Evaluation Surveys 
 
Six months following the end of the CoolCalifornia Challenge participants were asked to 
complete the research survey for a second time. A new section on program evaluation was 
added, which asked questions on participants’ experience with the program and 
recommendations for further program development. The following is a brief summary of results. 
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Participants were asked, “In what ways, if any, has the program changed your opinions about 
climate change or energy efficiency?” While this question did not explicitly ask about what 
actions participants had taken because of the program, ten respondents volunteered this 
information anyway, including: changing light bulbs, water heater, furnace, AC, solar panels, 
water tolerant plants, smart thermostats, new appliances, attic insulation, drying clothes on the 
line, and reducing idling. No one suggested that the program had changed his or her opinions of 
climate change or energy efficiency.  
 
Over 70% of respondents rated the program as either Excellent or Good, while 20% rate the 
program as Fair and 7% rated the program as Poor or Fail (Figure 51). Opinions on the program 
website rated only slightly lower than the program overall, while less than 50% of respondents 
rated the program newsletters favorably. A large portion of participants either did not have 
communication with local program implementers or rated that communication as only fair.  
 
Most respondents who rated the program unfavorably noted difficulty and frustration using the 
software. Several respondents said that they had problems inputting data and gave up. While the 
program did receive over 10,000 successful individual energy and vehicle reports, some users 
found the process to enter the data cumbersome, “clunky” or simply too difficult. A number of 
respondents requested that data be linked directly from utilities. Several also noted that they did 
not remember receiving newsletters or communication from the program, which may in fact have 
been the case since certain email providers frequently blocked email from the Challenge 
software. 
 
The most common recommendations to improve the program were to make the program “easy 
and fun.” Several subjects wanted more personalized attention, including more community 
events, local stories, local communication and guidance. A number asked for simple, small daily 
or weekly challenges or tasks to keep people engaged. In contrast, others noted that the program 
should focus more on “fundamental change” with drastically different technologies, policies and 
lifestyle choices. As one participant noted, “you use the ‘simple ways to save the planet’ model. 
It isn’t simple.” Still others wanted very specific actions to be promoted, like cleaning solar 
panels or planting shade trees. One participant noted that the program should engage elementary 
schoolchildren. The diversity of these comments underscores the difficulty of trying to meet 
needs of a large range of stakeholders and population segments. It is impossible to please 
everyone. At the same time, the comments were extremely helpful to understand the diversity of 
needs and ideas to improve the program.  
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6.3.5. Interviews with City Program Managers 
 
The research team conducted interviews with six city program managers from four of the eight 
participating cities: Chula Vista, Davis, Sacramento and Tracy. City program managers from 
non-finalist cities did not complete the consent form to participate in the interviews. Subjects 
were asked questions on their city’s original motivation for joining the Challenge, their goals and 
expectations and the extent to which those expectations were met, the resources contributed 
locally to run the program, the strategies employed, project outputs and outcomes, as well as 
recommendations for future program developers (See Appendix A.4 for interview instrument). 
Below is a summary of findings from transcriptions of those interviews.  
 
All participating cites, including those not interviewed, had recently completed climate action 
plans. While community engagement was frequently mentioned in these plans, they typically did 
not include specific recommendations or programs. Cities were largely interested in the 
Challenge as a way to fill this need. Even though the Challenge was marketed as a “pilot 
program” there was some expectation that it would be more fully developed and that cities would 
simply need to recruit participants.  Some of the cities already had fairly robust community 
engagement programs, particularly Davis and Chula Vista, yet other cities were just starting their 
community engagement on climate and energy. Davis, the winning city, has a 30+ year history of 
community engagement on energy and the environment, and the Cool Davis program was 
created specifically to engage Davis residents and businesses in climate action. Similarly, the 
city of Chula Vista was one of the first cities to create a climate action plan and the local utility 
(SDG&E) funds city staff to design and implement community-scale energy efficiency 
campaigns. Still, other less experienced cities, such as Tracy, were able to perform extremely 
well in the program by investing considerable staff and volunteer time to engage community 
members. While experience and technical capacity of city program managers and core volunteers 
varied somewhat between cities, it was the dedication of staff and volunteers to the program, and 
not their experience, that seemed to be the most critical factor.  
 
As the front line of engagement with participants, the city program managers were the first to 
receive program feedback. All of the city program managers mentioned some level of 
disappointment and frustration with the slow pace of software development. According to one 
subject, by the end of the program the software was at about “80%” of where they would have 
liked to be at the start of the program; had the program started at 80%, the program would have 
been much better. Some of the cities noted that they initially did not realize how much staff and 
volunteer time would be required of them to make the program a success in their community, 
while another noted that they really did not have specific expectations but became heavily 
involved during months of intense competition. All cities noted that more financial support 
would have been helpful, but this ranged form a few thousand dollars to tens of thousands.   
 
City program managers offered a number of suggestions. Common suggestions included more 
robust software and more support to city program staff and volunteers, either in-kind 
contributions or through additional funding. One of the cities stressed the importance of retaining 
complete contact information of participants during and after the program (cities were able to 
contact participants during the program via the software, but did not have direct access to their 
contact information). There was general agreement that the program should be well-planned in 
advance, giving cities sufficient time to prepare their strategies, and that the program and 
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software should not change substantially during the program itself. All cities agreed that the 
program was too long and suggested a shorter campaign of between 4-9 months. While some 
liked the idea of targeting specific populations, particularly schools, they stressed the importance 
of having fully developed programs and long lead times to reduce barriers and make the program 
easier to implement.  
 
Despite the fact that non-finalist cities did not participate in the interviews, it was clear from 
conversations during the program that motivation was low for cities that did not perform as well 
as the top cities. In some cases, city governments, including mayors, made personal appeals to 
motivate residents and there was some amount of embarrassment when cities did not perform 
well. An important lesson from this experience was that all cities should receive benefits from 
future programs, regardless of their ranking.  
 

6.3.6. Research Hypotheses 
 
This study was primarily exploratory and descriptive research, rather than theory-driven work 
designed to test an explicit hypothesis. Nonetheless, a number of operating hypotheses were 
tested, some of which were identified in the original research contract, and others that were 
added. A summary of hypotheses and results is presented in Appendix A.6. The most relevant 
study results are presented above and discussed below.  
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6.4. Discussion 
 
Energy and GHG Savings 
 
Participants tracking electricity saved an average of 14% compared to a control group, while no 
discernible savings were measured for natural gas. There are several plausible explanations for 
this difference. First, participation in the Challenge was greatly increased only during the most 
intense months of competition during the Qualifying Round (May through July, 2012) and the 
end of the Finalists Round (April through May, 2013) when there is much less demand (and 
opportunity to reduce) space and water heating. Electricity also supplies a larger number of end 
uses that may be easier to reduce through conservation than natural gas, which is primarily for 
space heating, water heating and cooking. For greenhouse gas reductions, lack of natural gas 
savings is particularly problematic since electricity is becoming less carbon intensive over time 
and will soon become a much smaller source of GHG emissions than natural gas for most 
California homes. A more targeted approach to identify and overcome barriers to adoption of 
natural gas conservation measures, applying competition strategies to motivate natural gas 
savings (e.g., a natural gas reduction goal and recognition for households meeting the goal) and 
shifting the timeline of the program to encourage more participation in winter months may be 
expected to lead to natural gas savings for future programs.  
 
This study calculated savings of 183 MWh of electricity, equivalent to the average annual 
electricity consumption of 23 California homes and 50 metric tons of CO2; however, this does 
not include any potential savings from motor vehicles (which were not calculated in this report 
due to reporting errors) or potential savings from households when not reporting electricity. 
Using an alternative methodology to calculate “bonus points” based on changes in participants’ 
past reported performance total savings were around 225 metric tons of CO2, but this still does 
not include potential savings from household when not reporting. This large range of potential 
savings (50 to potentially over 225 metric tons of CO2) highlights the challenge of quantifying 
results from opt in household greenhouse gas reduction programs. 
  
 
Survey Results 
 
Challenge participants were well represented across income brackets, but were primarily highly 
educated, politically liberal and middle-aged, with strong pre-existing pro-environmental 
attitudes and practices. Using the Opinion Dynamics population segmentation nomenclature, 
roughly 70% of active participants were “leading achievers,” 20% were “striving believers” and 
10% were “practical spenders.” Young people were much less likely to enroll and to actively 
participate and earn points in the program, suggesting that future program interventions would 
need to be much more highly tailored to their needs in order to earn their engagement. While 
conservatives and “practical spenders” were less likely to enroll in the program, those who did 
performed well compared to more liberal counterparts. Education was an important factor; 
participants with advanced degrees earned two to three times more points than participants 
without a college degree. Considerable effort would be needed to actively engage populations 
with less formal education. The most active participants were “leading achievers” and “practical 
spenders,” with “striving believers” straggling behind on points per household. 
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Households reported very altruistic and intrinsic motivations for participating in the program, 
with helping their community, making an environmental statement and supporting organizations 
they care about topping the list of motivations. Their values were also very much aligned with 
protecting the environment (universalism) and improving their communities (benevolence), 
regardless of political orientation or demographic characteristics.  
 
Even though participants already had strong intrinsic motivation and largely led low carbon 
lifestyles, they demonstrated strong capacity to make further reductions during the program. 
Participants were most actively engaged in the program during the most intensive months of 
competition (summer 2012 and spring 2013), suggesting that competition is a useful strategy to 
catalyze participation and engagement.    
 
Due to the small number of participants completing the survey during the program and 6-months 
post, and limited self-reported energy readings after completion of the program, we were not able 
to estimate persistence of behaviors or energy savings after completion of the program. Future 
program iterations could collect data directly from utilities, with permission from participants, in 
order to better evaluate persistence of behaviors and energy savings over time.  
  
 
Participant Evaluation Survey Questions & Program Manager Exit Interviews 
 
Participant survey data and interviews with program managers were helpful to understand what 
worked well and what elements of the program need improvement. 
 
Participant approval ratings for the program (70% excellent or good, and 90% fair or better) were 
somewhat higher than expected given the pilot nature of the program and emerging software 
capabilities. A number of participants noted changes in behaviors and energy efficient equipment 
purchases that were at least in part due to the program.  
 
While a number of participants expressed difficulties using the software, participants did 
successfully enter over 10,000 energy, motor vehicle or Kudo Points reports during the program, 
serving the primary purpose of the program well. By the end of the program the software had 
become quite sophisticated, providing feedback to participants entering data and facilitating 
communication with participants.  
 
Local program managers, as well as program staff and researchers, provided a number of 
recommendations for future program development. A few of the most important 
recommendations are: 
 

• Future programs should seek to increase motivation for all cities, even those not directly 
contending for top honors. 

• Care should be taken to design programs to meet a wide range of needs from 
communities with different levels of capacity and diverse populations.    
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• In its current form the program has not able to successfully engage younger and less 
households. Future programs should develop targeted programs at youth and young 
adults living in shared housing to engage them more actively in the program.   

• Programs should experimentally test different messages and intervention strategies to see 
which are more effective.  

• Implementation of all community-based social marketing steps proved too time 
consuming for cities with limited program implementation capacity. Future programs 
should focus on a few behaviors common to all cities and develop program intervention 
that are tightly integrated with the statewide program rather than relying on each city to 
develop its own unique interventions. Interventions should be crafted following steps of 
community-based social marketing to select behaviors, identify barriers and motivations, 
use appropriate intervention strategies to highlight motivations and reduce barriers, test 
and disseminate. 

• The length of the program should be shortened to prevent program fatigue from city 
program managers and participants. One tradeoff is a program covering summer months 
will have less opportunity for natural gas savings, while a winter program would have 
less opportunity for electricity savings and highlighting biking or outdoor activities and 
events.   

• Additional funding or incentives would be required to engage communities more deeply 
in the program.  

• The program software should be fully developed, engaging and easy to use.    
 
 

6.5. Conclusion 
 
The purpose of this study was to design, implement and evaluate an energy and carbon footprint 
reduction competition between residents of California cities. Program participants demonstrated 
higher than expected levels of participation and reductions in electricity consumption and 
greenhouse gas emissions during the program’s pilot year. The program successfully engaged 
nearly 3,000 participants in 8 participating cities over the 13-month program, with 900 
participants submitting over 10,000 monthly electricity, natural gas and motor vehicle reports.  
 
The program appealed primarily to older, highly educated, more politically liberal households, 
although conservatives were also engaged and earned nearly as many points per household. 
Despite strong pre-existing intrinsic motivation to engage in low carbon practices, participants 
demonstrated capacity to make further reductions through their participation in the program.  
 
Challenge participants saved an estimated 14% in electricity for those actively entering energy 
data in the software, which is encouraging given the pilot nature of the program. Future efforts 
could potentially expand these savings to a wider audience and achieve improved results.  
 
The program did not result in measurable savings in natural gas. One possible explanation is the 
relatively low level of participation in the program (measured by new registrations and energy 
readings) during winter months when there were no deadlines or specific program objectives for 
participants or cities. Participants also tracked, and were encouraged to reduce motor vehicle 
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usage; however, due to suspected reporting errors it was not possible to estimate reductions in 
vehicle travel or transportation greenhouse gas savings.  
 
The element of competition proved to be a powerful motivator, with participation levels spiking 
only during moments of intense competition at the end of the Qualifying and Finalists rounds. 
One drawback of the competition model was cities that were not in contention for a finalist spot 
or winning the program had less motivation to engage in the program. Future program models 
should seek to increase motivation for all cities, even those not directly contending for top 
honors, and care should be taken to design programs to meet a wide range of needs from 
communities with different levels of capacity and diverse populations.  
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Chapter 7. Conclusion 
 
The primary goals of this dissertation were to quantify consumption-based greenhouse gas 
emissions and reduction opportunities for U.S. households and communities and to investigate 
the potential of an inter-community GHG reduction competition among residents in California 
cities. These two goals suggest the potential for a new kind of urban planning that prioritizes 
GHG mitigation opportunities in each location and engages community members directly in the 
adoption of low carbon technologies and practices. Such initiatives are intended to compliment 
top-down climate policy, e.g., national market-based polices such as carbon taxes and cap-and-
trade, and non-market policies including standards and regulation. Several findings are salient to 
scaling up community and regional scale climate mitigation.   
 
The first major finding was quantification of household and community carbon footprints and 
GHG mitigation opportunities for metropolitan areas (Chapter 3) and for essentially every U.S. 
zip code, city, county and state (Chapter 4). The results reveal important differences in the size 
and composition of household carbon footprints as well as in the GHG reduction potential and 
financial cost of mitigation in different locations. For example, residential electricity accounts for 
only roughly five percent of average household carbon footprints in California but 30% in some 
U.S. locations, while transportation is a larger contributor to GHG emissions in California than 
most other states.  Lack of information on these differences may be contributing to misallocation 
of resources to address household impacts on climate change. For example, in California a far 
disproportionate share of funding is directed at reducing consumption of residential electricity 
compared to other sources of household carbon footprints. 
 
Carbon footprints also vary considerably within urbanized areas, with income, size of homes and 
distance to urban core contributing greatly to carbon footprints and the opportunities to reduce 
them. Despite these differences, Chapter 3 shows that lowering household greenhouse gas 
emissions, through shifting consumption to be less carbon intensive products, can result in 
significant financial savings for all household types and locations. The average U.S. household, 
for example, would save enough money by shifting consumption patterns to be able to purchase 
sufficient carbon offsets to become completely carbon neutral.  
 
In part to address a clear information barrier, this study developed online carbon management 
software and interactive maps allowing users to quickly identify GHG hotspots, compare their 
carbon footprints to similar users (comparative feedback) and prioritize GHG mitigation 
opportunities for each location and household. The data suggest the importance of targeting 
policies and programs addressing household consumption to the most carbon-intensive activities 
in each location and for different population segments within locations.  
 
 

7.1. Implications for Urban and Regional Planning 
 
The purpose of the study in Chapter four was two-fold: a) to develop household carbon profiles 
of each zip code, city, county and U.S. State, and b) to analyze the effect of population density 
and level of urbanization on full life cycle greenhouse gas emissions. The work is also intended 
to help cities better understand the primary drivers of household carbon footprints in each 
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location, to present in a visually striking way the impacts and interactions of our energy, 
transportation, land use, shopping and other choices, and to motivate cities to use this 
information to begin to create highly tailored climate action plans for their communities 
 
Previous studies have considered only a relatively small number of case studies of urbanized 
carbon footprints. Most studies have only considered partial household GHG impacts, e.g., 
vehicle fuel consumption and household energy. Similarly, most other similar studies have 
tended to address one spatial scale (e.g., metropolitan areas, or cities) and not multiple spatial 
scales. This is the first study of household carbon footprints to include every U.S. location, 
including essentially all zip codes, cities, counties and metropolitan areas. It one of the first, and 
the most geographically comprehensive, studies to compare population density with full life 
cycle greenhouse gas emissions. It is also one of the first studies to evaluate household carbon 
footprints at multiple spatial scales (zip codes, cities, counties, metropolitan areas).  
 
Several of the findings confirm previously know relationships. First, there is a strong correlation 
between population density and average household carbon footprints of large central cities  (r2 = 
0.3). Second, the primary drivers of carbon footprints are household income, vehicle ownership 
and home size, all of which are considerably higher in suburbs. Other important factors include 
population density, the carbon intensity of electricity production, energy prices and weather. The 
model includes 37 local variables in total. The study also confirms that central cites and suburbs 
have important social, economic and environmental interdependencies 
 
There are also a number of new findings that are potentially relevant to future city planning.  
 

a) Population dense central cities have significantly lower carbon footprints than less dense 
central cites; however, these cities also have more extensive suburbs. When considering 
the net effect of all metropolitan residents (suburbs and central city residents together), 
larger, more populous and population-dense metropolitan areas have slightly higher 
average carbon footprints than less populous and lower population-dense metropolitan 
areas. This is this is the primary finding of the paper that is used in the title. The 
implication for policy is that suburban sprawl undermines, or cancels, the benefits of 
urban population density. Urban development planning should focus on impacts at 
metropolitan as well as more local scales, as is typical in regional transportation planning.  

 
b) There is no correlation between population density and average household carbon 

footprints of zip codes (Figure 15a), cities (Figure 15b), counties (Figure 15c), or 
metropolitan areas (Figure 15d)...adjusted r2 for all of these locations is <0.01. This is 
consistent with other recent research showing there is a huge range of household 
greenhouse gas emissions at any given population density.  It would be incorrect to say 
population density is correlated with lower household carbon footprints.   
 

c) There is no correlation between population density and average household carbon 
footprints of suburbs (adjusted r-squared = 0.006).  See 20, model 2. There is a 
correlation for central cities, but there is not a correlation for suburbs. Suburbs are 
different. The next two points explain how.  
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d) When classifying suburbs into low, medium and high population, more populous and 
population dense suburbs have higher HCF, not lower. Large suburbs have population 
densities 3 times larger than mid-sized suburbs, and 6% higher carbon footprints. See 
Table 18. This is largely because more population dense suburbs have higher incomes 
than less dense suburbs. Higher incomes translate to important social, cultural and 
economic benefits, but higher incomes also generally correspond with higher 
consumption and greenhouse gas emissions.  
 

e) When controlling for income and household size, there is a fairly strong correlation 
between population density and HCF in central cities (r2=0.32), suburbs (r2=0.30) and all 
cities (r2=0.30). If policies can control for income, or even encourage lower income infill, 
then population density has a strong potential impact on lowering greenhouse gas 
emissions of those locations. In central cities, population density lowers carbon 
footprints, regardless of income, although the benefits are higher with low-income 
densities. In suburbs (which account for nearly 50% of the U.S. population), increasing 
population density has lead to higher incomes, and thus higher consumption, while not 
reducing vehicle emissions sufficiently since people still travel long distances to reach 
central cities, or to travel within large suburban areas.  

 
f) There is an inverted-U relationship between population density and HCF; HCF increases 

at from low to medium population densities, and decreases from medium to high 
population densities. The turning point is about 3,000 persons per square mile, which is 
very close to median population density of all locations, and a little higher than the 
population density of larger suburbs (which have densities of 2,700 persons per square 
mile). This helps explain why larger suburbs have higher carbon footprints; they are 
located to the left of the inflection point, while less dense suburbs are even further left on 
the x-axis. See Figure 15.  

 
 
This dissertation suggest different implications for suburbs and for central cities. Below is a line-
by-line summary of the paragraph in the Discussion section describing potential implications for 
urban planning. Note: these are not findings, but comments by the authors to generate policy 
discussion and future research.  
 

a) As a policy measure to reduce GHG emissions, increasing population density appears to 
have severe limitations and unexpected trade-offs. Our primary conclusion is the 
population density has contributed to lower household carbon footprints in urban core 
cities, but low carbon central cities also tend to have high carbon footprint suburbs. 
Planners need to consider economic, social and environmental interrelationships between 
central cities and suburbs in planning more sustainable communities. The data show the 
effect of existing population density on existing urban infrastructure and household 
carbon footprints. Our data does not suggest how HCF changes over time as population 
density changes over time so our comments are somewhat speculative here based on past 
historical data. To the extent that the future policies look like the past policies, the 
limitations and tradeoffs we suggest may be valid and worth considering in future 
planning.  
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b) In suburbs, we find more population-dense suburbs actually have noticeably higher HCF, 

largely because of income effects. This is one of the most surprising findings that has 
been missed in previous research that has explored only a limited number of (mainly 
central) cities, or large metropolitan areas.  This finding is relevant to 50% of the U.S. 
population living in U.S. suburbs. The implication is suburbs should be treated differently 
than central cities. 

 
c) Population density does correlate with lower HCF when controlling for income and 

household size; however, in practice population density measures may have little control 
over income of residents. This statement is in reference to suburbs only and should not be 
taken out of context. Population density correlates with lower HCF regardless of income 
in central cities. In suburbs, however, we have historically seen that more population 
dense cities have higher incomes, and higher carbon footprints. Cities seeking to reduce 
community-wide greenhouse gas emissions from a lifecycle perspective may want to 
consider ensuring sufficient low income and middle-income infill housing is built.  
 

d) Increasing rents would also likely further contribute to pressures to suburbanize the 
suburbs, leading to a possible net increase in emissions. This statement is in reference to 
higher incomes in suburbs and not a statement about population density and rents 
generally; it should not be taken out of context. Increasing housing stock should generally 
decrease rents, not increase rents, by decreasing demand for housing. Higher incomes, on 
the other hand, should increase property values and rents. While it may be possible that a 
focus on multi-unit housing in city cores could increase property values and rents for 
more spacious, single-family homes, this is not a point we make in the paper. More 
research is needed on this important question. 

 
e) As policy measure for urban cores, any such strategy should consider the larger impact 

on surrounding areas, not just the residents of population dense communities themselves. 
Transportation planning is frequently done at a regional level. A good example of this is 
California's SB375, which encourages regional targets and plans to lower greenhouse gas 
emissions from transportation. City planners; however, are primarily concerned with 
reducing emissions from their own jurisdictions and may not be concerned with impacts 
outside of their jurisdictions. This comment is very consistent with “smart growth” 
ideology and policies that seek to take a more holistic view of social, economic and 
environmental impacts of growth.  

 
f) The relationship [between population density of urban cores and HCF] is also log-linear, 

with a 10-fold increase in population density yielding only a 25% decrease in HCF. This 
is a factual statement of our results. We chose a 10-fold increase as the example, because 
it shows the full range of our results in the fewest words. A doubling of population 
density from 5,000 persons to 10,000 persons per square mile would have been a more 
realistic example. This corresponds to about a 5% decrease HCF, based on current data.  
Our intention was to show the limitations of density in reducing global greenhouse gas 
emissions. The U.S. emits five times the global average per capita emissions and globally 
humanity needs to reduce emissions by 80%, so planners should arguably be thinking 
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about how to achieve a 10- to 20-fold decrease in emissions. Given limited technical 
capacity in cities, we suggest that population density has limited potential and call for 
more tailored solutions, which in our view are urgently needed.  
 

g) Generally, we find no evidence for net GHG benefits of population density in urban cores 
or suburbs when considering effects on entire metropolitan areas. This statement is in 
reference to impacts of population density on entire metropolitan regions, not cities; it 
should not be taken out of context. A better, and certainly less controversial way of 
stating this would be that density does have positive effects on reducing emissions in 
urban cores, but these gains are undercut by income and urban form within large 
metropolitan areas. One of the most alarming findings, in terms of planning is that 
metropolitan regions all have very similar household carbon footprints when you 
consider the net impacts of residents of urban cores and suburbs together. Worse still, we 
find larger, more population dense metropolitan areas have slightly higher HCF.  

  
The paper suggests “an entirely new approach of highly tailored, community-scale carbon 
management is urgently needed.” We recommend that cities understand the size and composition 
of household carbon footprints in their locations and then develop customized plans that address 
the largest opportunities to reduce those impacts. Until now, cities and counties have lacked a 
way to estimate total household carbon footprint in their jurisdictions without paying for 
expensive and time-consuming studies. We hope municipalities will use the benchmarking 
carbon footprint profiles and data in this study to aid in this process.  
 
The study also has several limitations. First, the CoolClimate estimate should be considered 
benchmarks. We do not measure consumption or emissions, but rather estimate consumption of 
energy, transportation, food, goods and services based on locally-available data (37 variables in 
total, the most important of which are vehicle ownership, income, household size, population 
density, energy and fuel prices, the carbon-intensity of electricity and weather). Second, we 
assume a linear relationship between expenditures and emissions for goods and services. This is 
consistent with all similar studies on household carbon footprints. Unlike most such studies, we 
do not assume a linear relationship between income and food consumption; we have previously 
shown that while higher income households spend more on food, they do not eat more of any 
category of food than lower income households. Similarly, we know upper income households 
spend more on alcohol, but this does not mean that they drink more; rather they drink more 
expensive alcohol. Third, our model tends to underestimate consumption (and therefore 
emissions) at high or low levels of transportation and household energy. This is the nature of 
using multivariate regression analysis. See the Chapter 4 for more discussion on limitations and 
model validation.  
	
  
Population density has drawn considerable attention and influence in urban planning, yet there is 
increasing evidence that this is a poor sustainability strategy in certain locations. Increasing the 
number of large homes in low-density suburbs, i.e., making them somewhat more compact, 
would almost certainly increase net GHG emissions compared with increasing home 
construction in urban cores. In the first analysis of population density across all U.S. locations, 
Chapter 4 demonstrates that more population dense suburbs actually have higher household 
carbon footprints. In essence, unless shorter driving distances and smaller homes accompany 
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population density, there is no apparent GHG benefit to density. Yet large homes, packed tightly 
into small lots, located far from centers of urban cores aptly characterizes much of California’s 
recent housing development. This sort of density increases resource consumption and emissions 
locally, and regionally. Adding density to urban cores, on the other hand, dramatically decreases 
net emissions if sprawl can simultaneously be contained. Population density, of course, is only 
one factor in smart growth strategies. Other strategies are very consistent with our concept of 
tailored solutions, including increasing access to public transit, making cities more pedestrian 
and cycle friendly, colocation of housing with jobs, entertainment and shopping, and other smart 
growth policies. 
	
  

7.2. Implications for Behavior Change Policy 
	
  
Information technologies alone may have limited impact without programs actively engaged to 
use them. While our carbon footprint calculator has been widely used4 its impact may be limited 
to those who are motivated enough to find and use the tool, to the extent that they understand and 
trust the information, and that it tells them something they didn’t already know about a decision 
that they are likely to make. Such tools are also unlikely to improve the intrinsic motivation of 
individuals to take action. When targeting households it is also important to consider local 
values, competing priorities, barriers, motivations and abilities of population segments. Local 
community program developers are well-positioned to understand these local factors and to use 
social norms, public commitments, recognition, prompts, advising, persuasive messaging and 
other strategies known to influence human behavior.  
 
The goal of the CoolCalifornia Challenge was to design, implement and evaluate a carbon 
footprint reduction competition between participating California cities. The program mobilized 
city staff and volunteers in each community to engage residents on climate change and 
encourage them to track their electricity, natural gas and motor vehicle usages in online software. 
Participants earned points for having lower emissions than similar households in their location 
(using the CoolClimate Calculator benchmarking methodology described in chapters 3 and 4), 
and triple-rated points for reducing their consumption over time. They also earned points for 
taking small actions such as uploading stories and photos, inviting friends and taking a research 
survey.     
 
The program used techniques common to behavioral interventions, including commitments, goal 
setting, feedback, local messengers, social networks, persuasive messaging, incentives and 
competition to recruit and engage households in a yearlong program. Participants earned points 
for tracking and reducing household energy consumption and motor vehicle emissions, as well as 
for taking simple one-time actions, like inviting friends, uploading stories and completing a 
research survey.  
 

                                                
4	
  The	
  CoolClimate	
  Calculator	
  (coolclimate.berkeley.edu/carboncalculator)	
  has	
  received	
  well	
  over	
  one	
  million	
  
unique	
  visits	
  over	
  the	
  last	
  nine	
  years.	
  Versions	
  of	
  the	
  tool	
  have	
  been	
  adopted	
  by	
  the	
  states	
  of	
  California	
  
(CoolCalifornia.org/calculator)	
  and	
  Oregon	
  
(http://www.deq.state.or.us/programs/sustainability/carboncalculator.htm),	
  as	
  well	
  as	
  a	
  number	
  of	
  
companies	
  and	
  organizations.	
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Participating cities enrolled 2,667 households and logged over 10,000 electricity, natural gas and 
motor vehicle odometer readings in the online software. Using in Variability in Adoption (VIA) 
methodology, participants reduced electricity consumption by 14%, but no savings in natural 
gas. Lack of natural gas savings is possibly due to lack of competition deadlines during winter 
months when opportunities to reduce natural gas are higher, and fewer natural gas end uses for 
potential reductions. Due to participant user error we were not able to estimate savings from 
motor vehicles. 
 
Older and more highly educated participants outperformed younger and less educated 
participants, while income, political identity and attitudes toward climate change affected 
participation levels, but not performance. Participants reported very altruistic motivations for 
joining the program, including improving where they live, protecting the environment and 
helping organizations they care about. While winning prizes and earning recognition for their 
city ranked low on a list of reported motivations, participation in the program dramatically 
spiked only during intense moments of competition.  
 
Much of the research conducted for this study was descriptive in nature, with the CoolCalifornia 
Challenge serving as a case study. Since it was not possible to run a randomized controlled trial, 
we were not able to rigorously test hypotheses. A summary of hypotheses tested and their results 
is included in Appendix C.6. Nonetheless, the program does serve as a proof of concept that 
inter-city competition may serve as a mechanism to scale up the adoption of low carbon 
technologies and practices across a wide of cities and demographics. As of this writing, the 
second year of the program is now complete. It achieved roughly a 40% increase in participation, 
a 60% increase in GHG savings in half the time (6 months) and with less than half the cost.   
 
Together, this evidence suggests that inter-city competitions can be a successful strategy to 
reduce community-wide greenhouse gas emissions. The program not only provides information 
to residents, but seeks to increase their motivation, capacity and belief in their ability to create 
meaningful change. The communities that achieved high levels of sort of engagement were the 
most successful in the program.  

 

7.3. Future Work 
 
A number of projects are currently under development that build upon work presented in this 
dissertation. The first task is to develop higher spatial resolution maps, down to neighborhood 
scales. This resource will help communities target different mitigation actions to different 
neighborhoods, but also provide better benchmarking for households to compare their own 
emissions at neighborhood scales. For example, we estimated average vehicle miles traveled for 
the city of Davis California at the level of U.S. Census Tracks (Figure 52). This map shows that 
the neighborhoods that have been developed over the last 20-30 years have the highest average 
per capita vehicle usage. Additionally, these neighborhoods commute almost exclusively by car, 
whereas in other neighborhoods, biking, walking and public transit are primary commute modes. 
This suggests a targeted approach to community-based transportation programs, focusing on 
promoting adoption of electric and efficient vehicle technologies in high VMT neighborhoods.  
 



   134 

 

 
The next step will be to add temporal data to track changes in carbon footprints over time in each 
location and compare the effect of different polices (e.g., land use policy). For example, 
demonstrating that all of the red and orange areas of the VMT map of Davis were mostly 
developed during the last 20 years could influence future planning priorities. Temporal data 
would show clearly show the effect of previous land use decisions.  
 
Ultimately, the goal of this work will be to create an ecosystem “smart” decision-support tools 
for U.S. and international communities that help identify the largest opportunities to reduce GHG 
emissions, provide comparative feedback and access to programs that enable the adoption of low 
carbon technologies and practices at a wider scale. This will involve creating tools and programs 
that are participatory in nature, that effectively utilize resources, build local technical capacity 
and match with the values, goals, priorities, abilities and motivations of local communities. If 
local climate action plans are to achieve their full potential they must become mechanisms that 
enable broad social and institutional change at household, community and regional scales.   
 
 
  
 
 
  
  

Figure	
  52.	
  Average	
  household	
  vehicle	
  miles	
  traveled	
  (VMT)	
  in	
  Davis,	
  California 
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Appendix A: Supporting Materials for Chapter 5 – CoolCalifornia Challenge 

 

Appendix A.1. Summary of key progress indicators and electricity data by city 
 
This appendix contains key progress indicators for cities participating on the CoolCalifornia City 
Challenge pilot program (2012-2013). Table 1 presents key indicators for each participating city. 
Green, yellow and red colors indicate first, second and third place rankings, respectively, among 
the top three cities for each indicator. 
 
Table.	
  Summary	
  of	
  Key	
  Progress	
  Indicators	
  by	
  City	
  

 
 
  
Participants in the city of San Jose used proprietary software (Wattzon), while participants in all 
other cities used the Challenge software. There were several important differences between the 
two platforms. Most importantly, Wattzon connects to PG&E accounts directly so participants do 
not need to enter monthly energy data manually as in the Challenge software. This means that 
San Jose participants earned points every month regardless of their engagement with the 
software. At the same time, San Jose participants did not have the option to track automobiles. 
Given these differences in data collection, results for San Jose are not directly comparable to 
other cities.  
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Appendix A.2. CoolCalifornia Challenge Participants Survey 
 
Thank you for joining the CoolCalifornia Challenge and for agreeing to participate in this 
survey. 
 
The purpose of the CoolCalifornia Challenge is to encourage Californians to adopt “greener,” 
more environmentally friendly lifestyles. 
 
The following survey will aid the research team in understanding the motivations of 
CoolCalifornia Challenge participants in order to enhance the program and contribute to 
behavioral and social science research. 
 
Completion of this survey is completely voluntary. You will receive points in the CoolCalifornia 
Challenge for completing the survey. You may choose to skip any question in the survey that 
you do not wish to answer by selecting “no answer." 
 
Please answer the following questions to the best of your ability. Your answers will greatly 
increase the effectiveness of this program.   
 
 
 
Part A. Demographics 
1. How old are you? 
18 to 24 
25 to 34 
35 to 44 
45 to 54 
55 to 64 
65 to 74 
75 or older 
No answer 
 
2. What is your sex? 
Male 
Female 
No answer 
 
3. What is your annual household income and personal income? 

• Your household income? 
o Less than $10,000 
o $10,000 to $20,000 
o $20,000 to $30,000 
o $30,000 to $40,000 
o $40,000 to $50,000 
o $50,000 to $60,000 
o $60,000 to $70,000 
o $70,000 to $80,000 
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o $80,000 to $90,000 
o $90,000 to $100,000 
o $100,000 to $120,000 
o $120,000 to $150,000 
o Over $150,000 
o No answer 

• Your personal income? 
o Less than $10,000 
o $10,000 to $20,000 
o $20,000 to $30,000 
o $30,000 to $40,000 
o $40,000 to $50,000 
o $50,000 to $60,000 
o $60,000 to $70,000 
o $70,000 to $80,000 
o $80,000 to $90,000 
o $90,000 to $100,000 
o $100,000 to $120,000 
o $120,000 to $150,000 
o Over $150,000 
o No answer 

 
4. What is the highest level of education you have completed? 

• Less than high school 
• High school / GED 
• 2-year college degree (Associates) 
• 4-year college degree (B.A., B.S.) 
• Master (M.A., M.S., etc.) 
• Doctoral Ph.D. 
• Professional (M.D., J.D., etc.) 
• No answer 

 
5. Generally speaking, do you think of yourself as politically conservative or liberal? 

• Conservative 
• Somewhat conservative 
• Neutral 
• Somewhat liberal 
• Liberal 
• No answer 

 
6. Generally speaking, do you think of yourself as… 

• Republican 
• Democrat 
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• Other (please specify) 
• No party / not interested in politics 
• No answer 

 
Part B. Lifestyle 
 
7. How did you hear about the CoolCalifornia Challenge? 
(check all that apply) 

• A family member 
• A friend 
• A neighbor 
• A colleague at work 
• A classmate or teacher 
• A contractor 
• A community-based organization 
• A community event or farmer's market 
• A participant in the CoolCalifornia Challenge 
• A public forum or meeting 
• Television 
• Radio 
• Newspaper 
• A flyer, brochure or poster 
• Local government 
• Someone came to my home 

Other (please specify) 
 
8. How often do you do the following? 

• When the weather is nice outside, how often do you walk or bike instead of 
driving? 

o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• When the weather is not nice outside, how often do you walk or bike instead of 
driving? 

o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 



   153 

o Never or rarely 
o No answer 

• Carpool instead of driving alone 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Participate in a car share program 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Recycle 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Compost 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Eat a vegetarian meal 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Volunteer for a non-profit organization 
o 5-7 days a week 
o 2-4 days a week 
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o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Attend educational events 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Turn off unneeded lights 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• During summer, raise your thermostat to 76 degrees or higher 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• During winter, lower your thermostat to 68 degrees or cooler 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

• Unplug appliances when not in use 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 
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• Take public transit (bus, train, lightrail, subway, etc.) 
o 5-7 days a week 
o 2-4 days a week 
o About once a week 
o Once or twice a month 
o Less than once a month 
o Never or rarely 
o No answer 

 
9. Have you done any of the following home energy improvements? 
(check all that apply) 

• Insulated your attic 
• Caulked and weather-stripped your home 
• Installed an energy efficient water heater 
• Installed an energy efficient furnace 
• Installed an energy efficient air conditioner 
• Purchased energy efficient refrigerator 
• Purchased energy efficient washer or dryer 
• Purchased energy efficient small appliances 
• Installed energy efficient lighting Installed energy efficient lighting Installed 

energy 
• efficient lighting Installed energy efficient lighting 

 
10. Do you own any of the following? 
(check all that apply) 

• A motor vehicle that gets over 30 miles per gallon 
• A hybrid electric vehicle 
• A plug in hybrid electric vehicle (ex: Chevy Volt) 
• An all electric vehicle (ex: Nissan Leaf) 
• A motorcycle or scooter 
• An electric bicycle 
• A neighborhood electric vehicle (NEV) 

 
Part C. Opinions & Attitudes 
 
11. How sure are you that global warming (or climate change) is happening? 

• Extremely sure global warming is happening 
• Very sure global warming is happening 
• Somewhat sure global warming is happening 
• Not at all sure global warming is happening 
• Don't know 
• Somewhat sure global warminig is not happening 
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• Very sure global warming is not happening 
• Extremely sure global warming is not happening 
• No answer 

 
12. How worried are you about global warming? 

• Extemely worried 
• Very worried 
• Somewhat worried 
• Not very worried 
• Not at all worried 
• No answer 

 
13. Personally, do you think you are well informed about... 

• ...the different causes of global warming 
o Very well informed 
o Fairly well informed 
o Not very well informed 
o Not at all informed 
o No answer 

• ...the different consequences of global warming 
o Very well informed 
o Fairly well informed 
o Not very well informed 
o Not at all informed 
o No answer 

• ...ways in which we can reduce global warming 
o Very well informed 
o Fairly well informed 
o Not very well informed 
o Not at all informed 
o No answer 

 
14. If global warming is happening do you think it is: 

• Caused mostly by human activites 
• Caused mostly by natural causes in the environment 
• Other (please specify) 
• None of the above because global warming isn't happening 
• No answer 

 
15. My actions can make a difference to help reduce global warming 

• Strongly agree 
• Agree 
• Somewhat agree 



   157 

• Disagree 
• Strongly disagree 
• No answer 

 
16. The following is a list of reasons why people are interested in joining the 
CoolCalifornia Challenge. 
 
How important is the following to you? 

• Living in a "Cool California City" 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Making an environmental statement with your actions 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Receiving recognition for your community 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Making a political statement 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Learning about new technologies 
• Very important 
• Important 

 

• Somewhat important 
• Not very important 
• Not important at all 
• No answer 
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• Meeting like-minded people 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Getting to know your neighbors 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Having fun 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Improving where you live 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Supporting organizations you care about 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Learning how to save money 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Receiving discounts for green products 
o Very important 
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o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Winning prizes 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Being part of something important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not important at all 
o No answer 

• Other (please specify) 
 
 
17. Taken all together, how would you say things are these days? 
Would you say that you are: 

• Very happy 
• Pretty happy 
• Not too happy 
• No answer 

 
18. Generally speaking, would you say that most people can be trusted or that you can’t 
be too careful in dealing with people? 

• People can be trusted 
• You can't be too careful in dealing with people 
• No answer 

 
19. Please rate how important each value below is as a guiding principle in your life. 

• Social status and prestige: recognition for your achievements 
o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 
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• Power: Control or dominance over people and resources 
o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Achievement: Personal success through demonstrating competence according to 
social standards 

o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Hedonism: Pleasure and sensuous gratification for oneself. 
o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Self-direction: Independent thought and action—choosing, creating, exploring. 
o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Universalism: Understanding, appreciation, tolerance, and protection for the 
welfare of all people and for nature 

o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Benevolence: Preservation and enhancement of the welfare of people with whom 
one is in frequent personal contact. 

o Extremely important 
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o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Tradition: Respect, commitment, and acceptance of the customs and ideas that 
traditional culture or religion provide. 

o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Conformity: Restraint of actions, inclinations, and impulses likely to upset or harm 
others and violate social expectations or norms. 

o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 

• Security: Safety, harmony, and stability of society, of relationships, and of self. 
o Extremely important 
o Very important 
o Important 
o Somewhat important 
o Not very important 
o Not at all important 
o No answer 
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Appendix A.3. CoolCalifornia Challenge Program Evaluation Survey Questions 
 
17. How would you rate the program website? 

• A. Excellent 
• B. Good 
• C. Fair 
• D. Poor 
• F. Fail 
• No answer 

 
18. What improvements would you recommend for the website? 
 
19. How would you rate the program newsletters? 

• A. Excellent 
• B. Good 
• C. Fair 
• D. Poor 
• F. Fail 
• No answer 

 
20. What improvements would you recommend for the newsletters? 
 
21. How would you rate the communication you have had with local program 
implementers? 

• Excellent 
• Good 
• Fair 
• Poor 
• Fail 
• No answer 

 
22. What improvements would you recommend for local communication? 
 
23. What energy efficient technologies, if any, did you purchase as a result of this 
program? 
 
23. What energy conservation or low-carbon practices did you implement as a result of 
this program? 
 
24. In what ways, if any, has the program changed your attitudes or opinions about 
climate change or 
energy efficiency? 
 
25. Overall, how would you rate the CoolCalifornia Challenge program? 

• Excellent 
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• Good 
• Fair 
• Poor 
• Fail 
• No answer 

 
26. What improvements would you recommend for the CoolCalifornia Challenge? 
(max length = 5,000 characters) 
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Appendix A.4. Program manager exit interview questions 
 
Thank you very much for participating in this evaluation research for the CoolCalifornia 
Challenge pilot project. Your feedback is critically important to help U.C. Berkeley and the 
California Air Resources Board learn from your experience and to improve similar programs in 
the future.  
 
This interview should take about 45 minutes but could be shorter or longer depending on the 
length of the answers you give. Feel free to answer the questions to the extent that you feel 
comfortable. I will be asking 26 questions, some with multiple parts.  
 
As we mentioned in the consent form, I will be recording audio and later transcribing this 
interview to accurately capture our conversation.  The research team will analyze the interviews 
and may include quotations or other results in future publications.   
 
During this interview I will be asking about the following: a) the motivations, goals and 
expectations you had when your city joined the program, and to what extent those goals and 
expectations were or were not met through the pilot program, b) the target population and any 
relevant characteristics of participants in your city, c) the resources that were available locally, 
such as volunteer and staff time, as well as the resources provided by the program, including 
funding, support, and software; I will ask you to evaluate each of these separately, d) the 
activities and techniques used by the program, e) the specific project outputs, like newsletters, 
events, sign ups, energy readings, and raffle prizes, and f) the project outcomes, such as 
greenhouse gas reductions, awareness and local capacity. At the end of the interview you will 
also have a chance to tell me anything else you think would be useful for the evaluation of this 
program.  
 
Do you have any questions? Are you ready to begin? OK, let’s get started. 
 
Identification  
 

1. What was your role with the CoolCalifornia Challenge? For example, were you a local program 
manager or a volunteer? 
 

2. What was your city’s placement in the final rankings of the CoolCalifornia Challenge 2013? 
 
A) Motivation, Goals, Expectations 
 

3. Thinking back to when your city first joined the CoolCalifornia Challenge, what were the 
primary motivations of your city and/or your organizations to join and participate in the 
program?   
 

4.  What specifically did you seek to accomplish by participating in the program and to what extent 
were those expectations met? 
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B) Target Population 
 

5. How would you describe Challenge participants in your community to a friend? You can include 
anything you think that would best characterize this group or groups of individuals.  
 

6. Was this the target population you were originally seeking to engage? If not, how was the 
population different? 
 
 
C) Inputs (Resources) 
 

7. Who was primarily responsible for organizing the program at the local level? 
 

8. What resources did the program organizers and/or other organizations in your community 
contribute? Resources typically include things like volunteer and staff time, funding, print 
materials, sponsorship, etc.  
  

9. The CoolCalifornia Challenge statewide program sought to provide the following resources to 
cities: funding, program planning and logistical support, outreach and communications support, 
and software. I’d like to discuss each of these separately.  
 

a.  Funding:   
i. Your city received (level of funding) in seed money and contributions. 

How did your organization use this funding? 
ii. Had more funding resources been available, what would have been your 

primary uses of this funding?  
iii. What would you consider an adequate level of funding to meet your 

expectations for the program? 
b. Program and logistics 

i. How involved was your city in planning the program? 
ii. Were your concerns heard and addressed? 

iii. Were biweekly calls beneficial? How could these be modified or 
improved? 

iv. What was your impression of the CBSM workshops? Were they helpful? 
How could they be improved? 

c. Outreach and communications. How would you evaluate the effectiveness of each 
of the following? 

i. Newsletters 
ii. E-mail communication with participants 

iii. Print materials 
iv. Interns 

d. Software 
i. The Challenge software was rolled out and changed throughout the one-

year pilot project. How would you rate the software? 
ii. What were the aspects of the software that you liked and disliked most? 

iii. How could the software be improved? 



   166 

iv. What else would you like to tell us about the software? 
  
D) Actions - Activities 
 

10. The Challenge pilot used a number of interventions strategies common with behavior programs, 
including prompts, persuasive messaging, goal setting, social diffusion, incentives and feedback. 
Which of these techniques do you find most effective with your target populations?  What ideas 
do you have about improving the use of these strategies? 
 

11. Your city conducted recruitment and outreach events. What did you find to be most effective, 
and what might you do differently? 
 

12.  The program focused primarily on newsletters and direct email communication with 
participants. How could communication with participants be improved?  
 

13. Our goal with the points system were that it be fair, motivating and easy to understand. Do you 
think it met these goals? How could we improve the points system? Would simply awarding the 
winning city based on CO2 reduced make more sense? 
  
   
E) Outputs 
 
 
I’d like to discuss project outputs.    
 

14. How many events did your community hold and what did these events entail? 
15. Your city recorded ( ) energy and vehicle readings and () surveys. Are you satisfied with this 

level of participation? 
16. Your city produced ( ) newsletters.  
17. How would you evaluate the awards ceremony (ask only if participated)? 

 
 
 
F) Outcomes 
 
I’d like to discuss program outcomes. 
 

18. Your city achieved ( ) pounds of greenhouse gas emissions. Are you satisfied with this level of 
reductions for the pilot? 

19. To what extent did the program raise awareness of climate change and mitigation opportunities? 
20. How did the city’s outputs (events, printed materials, emails, etc.) encourage participation, raise 

awareness, or demonstrate GHG reductions? 
21. To what extent was your community able to raise its own technical and organizational capacity 

to address community-wide greenhouse gas management through the Challenge? 
 

22. To what extent was social cohesion improved in your community? 
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G) Other 
 

23. I’d like to ask you a few questions about planning for Round II. What changes would you 
suggest for a successful program?  
 

24. What would be the ideal timeline for your city? 
 

25. Imagine the Challenge had three grand prizes of $20,000, $10,000 and $5,000 for 1st, 2nd and 3rd 
places respectively, in addition to $20,000 to distribute to cities based on new participants signed 
up by December 31.  Additional sponsorship money would be distributed based on total points 
earned in each city at the end of the program. What do you think of this distribution of funds? 
Would it be better to distribute in some other way? 
 

26. Is there anything else you would like us to know? 
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Appendix A.5. Note on changes to original program design 
 
The original research contract between U.C. Berkeley and the California Air Resources Board 
(#10-325) called for a different program design and research hypotheses than outlined in this 
report. This note briefly explains major changes, why these changes were made, while Appendix 
H summarizes the extent to which original research hypotheses were tested as a result.  
 
The study was originally designed in contract 10-325 as a yearlong competition between three 
cities. Cities would be chosen based on their prior experience engaging residents in 
sustainability. These innovative cities would each receive $12,000 in initial seed money and 
would lend their experience to help design the program over a six-month long “Phase 0,” and 
implement programs locally over one year. Additional seed money would be sought from project 
sponsors. Participants would be required to complete an initial research survey and agree to 
provide access to their energy data and other reporting requirements agreed to by cities. 
Participants would also complete an exit survey and a survey 6 months after the end of the 
competition.  
 
Very early in the contract period ARB and U.C. Berkeley agreed to substantial changes to the 
program design. Due to concerns that the three chosen cities would not be representative of the 
California population it was not clear that lessons could be transferred to other communities. At 
the same time it was understood technologies and practices typically start with innovators and 
then early adopters (Rogers Everett’s Diffusion of Innovations hypothesis). In order to resolve 
this conflict the parties agreed to an open statewide competition, allowing any California city the 
opportunity to compete. This model had the advantages of being more fair, allowing a broader 
representation of California cities to join (including innovative cities), and the ability to crown 
the winner the “Coolest California City,” providing additional motivation for cities to join and 
participate.  
 
The tradeoff of this open competition model was the loss of the ability of U.C. Berkeley to work 
directly with a small number of cities to develop and test targeted behavior interventions in each 
city. In part to help ameliorate this tradeoff the new program design included a “Qualifying 
Round” during which all cities would compete during 3 months, after which only the finalists 
would continue for the remainder of the program. However, U.C. Berkeley researchers would 
not be able to work directly with Finalists until almost a full year after the start of the research 
contract, limiting the ability to design robust interventions for specific populations in each of the 
three cities.  
 
A second major change to the program design was U.C. Berkeley researchers were not allowed 
to require participants to take research surveys in order to participate in the program. U.C. 
Berkeley’s Office of Protection of Human Subjects did not allow this since this would cause 
harm to those who sought to participate in the program, but were not willing to participate in the 
the research aspects of the program. As a result, participants were allowed to sign up without 
taking the research survey, thus limiting the availability of data collected by the research team 
from all participants.     
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A third major change was the need to develop sophisticated software to run the statewide 
competition. In the original design the three participating cities would help with data collection, 
and only relatively minor changes were envisioned to the existing CoolCalifornia carbon 
calculator. The new design required a robust and complex software system, including the ability 
to manually record energy and vehicle odometer readings, uploading photos and stories, 
communication with participants, raffles, creating and managing teams, calculating points for 
households, teams and cities and providing program-related content to participants. Only the 
most basic and essential functionality was ready by the start of the program, while other features 
were rolled out throughout the yearlong program.  
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Appendix A.6. Summary of results for research hypotheses 
 
Hypotheses in the original research contract: 

a. Program participants will reduce their absolute carbon footprints compared to their baseline 
assessment. 

• Participants used an average of 14% less electricity than the control group, and about the 
same amount of natural gas.  

• Only the electricity and natural gas savings were calculated, not savings from motor 
vehicles or other aspects of carbon footprints, e.g., food. 

• Total greenhouse gas savings from electricity were calculated at 50 metric tons CO2. 
Program-wide greenhouse gas savings calculated by the software as “bonus points” were 
227 metric tons (~500,000 lbs CO2). 

b.      Participants will report being more motivated by social incentives (recognition) and 
environmental incentives (doing the right thing) than by financial incentives (monetary value 
of prizes). 

• True.  Participants did not enroll and participate for the chance to receive a prize (prizes 
ranked last on a list of 14 motivations). They were primarily motivated to improve where 
they live, support organizations they care about and help protect the environment. 

• However, there appears some discrepancy between what participants report and what is 
observed (e.g., more vigorous participation during intense competition).  

c.       Lower-income households will exhibit more financial motivations to participate. 

• True, although the effect was not large. 
• Conservatives and less educated participants also expressed somewhat higher financial 

motivations. 

d.      Participants in EcoTeams will reduce more than participants not in EcoTeams. 

• EcoTeams were not sufficiently studied because the teams feature of the software was 
added too late in the program.  

e.      Program participants with prior relationships and greater expectation of future interactions 
with other program participants will reduce more than participants without strong pre-
existing social connections.  

• EcoTeams were not sufficiently studied because the teams feature of the software was 
added too late in the program.  

f.        Those with more altruistic environmental motivations for participating will have lower 
starting carbon footprints than participants with primarily social and financial motivations for 
participating.  
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• This was not studied due to the difficulty of tabulating the results for each of the roughly 
10,000 individual electricity, natural gas and motor vehicle reports.    

g.       Program participants with higher starting carbon footprints will reduce more than 
households with lower carbon footprints. 

• This was not studied due to the difficulty of tabulating the results for each of the roughly 
10,000 individual electricity, natural gas and motor vehicle reports.    

h.      Households and communities with higher carbon footprints will reduce more, in absolute 
terms and as a percentage, than households with lower carbon footprints due to the 
prevalence of “low-hanging-fruit” actions and comparison with peers. 

• This was not studied due to the difficulty of tabulating the results for each of the roughly 
10,000 individual electricity, natural gas and motor vehicle reports.    

i.         Communities will achieve roughly similar results overall. 

• False. Non-finalist cities (except San Jose, which used a separate proprietary software 
platform and can not be directly compared), did not achieve nearly as many points as 
finalist cities. 

j.         Savings will persist over time 

• Since we did not have access to energy data for participants after the program we could 
not evaluate persistence. The follow up survey 6 months following the end of the 
program provided insufficient evidence for persistence of behaviors. 

 
Additional hypotheses tested: 
 

k.         The program will appeal almost exclusively to liberal environmentalists. 

• False. While most participants tended to be fairly well informed about the causes and 
consequences of climate change (per self-reported responses), and also were more likely 
to be politically liberal and highly educated (both strong determinants of pro-
environmental beliefs and actions) over 30% of participants were politically conservative 
or neutral and earned nearly as many points per household as liberals.   

l.         The program will appeal mostly to young people who tend to be more interested in online 
games. 

• False.  Only 15% of participants were under 35 and young persons earned fewer points 
per household than older participants. 
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m.         Households with children will earn more points than households without children since 
they will be more interested in the health and well-being of their children and future 
generations. 

• False.  Households without children earned more points on average than households with 
children. This is possibly due to the larger number of seniors in the program and lack of 
messaging on health benefits (as in the Delmas et al, 2013 study). 

n.         Participants will primarily be interested in receiving recognition for their city and prizes 
for themselves (both extrinsic motivations).   

• False.  Earning recognition for cities ranked 11 out of 14 motivations and earning prizes 
ranked last. Participants were primarily interested in improving where they live, 
supporting organizations they care about and making an environmental statement 

o.         Participants will have primarily universalistic values (defined as understanding, 
appreciation, tolerance, and protection for the welfare of all people and for nature). 

• False.  While universalism was the highest rated value overall, self-direction, security and 
benevolence were also strong values.  

p.         Manually entering energy data will be a major barrier preventing broad participation in 
the program. 

• False.  Over 900 households successfully manually entered over 10,000 individual 
electricity, natural gas, odometer readings and “kudo points” reports.  

q.         Households for which energy data are automatically received by software will reduce 
more energy since they will be able to focus on reductions rather than entering data as the 
primary means of participation. 

• This appears to be false.  The city of San Jose was the only city to have data 
automatically imported into a software platform (in this case the Wattzon platform), but 
San Jose participants earned only 1,139 Bonus Points per active household compared to 
an average of 1,568 Bonus Points per active household, on average, and over 2,200 
Bonus Points per active households in Davis and Chula Vista. Bonus Points are 
calculated as CO2 savings compared to the household’s previous consumption, adjusting 
for weather. Active households are defined as households with more than one month of 
energy data. This is not a truly fair comparison since the Wattzon platform used by San 
Jose did not include motor vehicles; however, San Jose participants had data for all 13 
months for all active households, while other Challenge participants only had data for 
those months in which they reported data (an average of 5 months per active household). 
The Wattzon software platform used by San Jose participants was also fundamentally 
different than the Challenge software in many ways so comparisons are not really 
appropriate (and are therefore not addressed in the study).  
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• It may be that manually entering data each month is a prompt to reduce energy and a way 
to demonstrate active engagement with the program.   

• Future programs should experimentally test manual data entry and automated data entry 
in order to test the efficacy of both approaches. 
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Appendix A.7. Analysis of results with and without Davis 
 
The winning city, Davis, is a university town with a highly educated population. As shown in 
Figure 8, over 50% of Challenge participants from Davis filling out the survey have a graduate 
degree. It is reasonable to ask whether removing Davis participants from the analysis would 
affect all of the study results, and not just the energy savings. This section briefly explores 
removing Davis participants from the analysis of survey results and the impact this has on 
results.  
 
As shown in Figure 33, excluding Davis from the results does not affect the results for key 
survey results, including average points by graduate degree, sex or political party.  
 
 
Average points by sex, graduate degree and political party, with and without Davis 
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Appendix A.8. Project budget overview 
 
The budget below contains all expenses for the design, implementation and evaluation of the 
CoolCalifornia City Challenge pilot project 2012-2103, not including in-kind contributions from 
cities and volunteers.  
 

 
 
 
Budget for 2014 Competition 
At the time of this writing, Round 2 of the CoolCalifornia City Challenge is now complete. The 
program achieved 40% higher participation (3,775 households) and preliminary calculations 
indicate that Round 2 achieved 60% more CO2 savings as calculated by Bonus Points (360 
metric tons CO2 compared to 225) in half the time (six months) and less than half the budget.  
The program also engaged ten very diverse cities, lending evidence that the program model is 
highly scalable to cities across California.  
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The total project budget for the CoolCalifornia City Challenge in 2014 was $150,000, including 
$100,000 in seed and prize money to cities from Energy Upgrade California and $50,000 in 
project management and software development for U.C. Berkeley (funding also from Energy 
Upgrade California). This does not include in-kind contributions from the participating cities and 
the California Air Resources Board.  
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Appendix A.9. Screenshots of CoolCalifornia Challenge website 
 
 
a. Screenshot of sample user profile page 
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b. Screenshot of sample team page 
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c. Screenshot of final scoreboard 
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Appendix A.10. Example program materials 
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