Deposition of a particle-laden film on the inner wall of a tube
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Deposition of a particle-laden film on the inner wall of a tube

Abstract

The withdrawal of a liquid or the translation of a liquid slug in a capillary tube leads to the deposition of a thin film on the inner wall. When particles or contaminants are present in the liquid, they deposit and contaminate the tube if the liquid film is sufficiently thick. In this article, we experimentally investigate the condition under which particles are deposited during the air invasion in a capillary tube initially filled with a dilute suspension. We show that the entrainment of particles in the film is controlled by the ratio of the particle and the tube radii and the capillary number associated with the front velocity. We also develop a model which suggests optimal operating conditions to avoid contamination during withdrawal of a suspension. This deposition mechanism can also be leveraged in coating processes by controlling the deposition of particles on the inner walls of channels.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View