- Main
Mini-brain computations converting dynamic olfactory inputs into orientation behavior
Published Web Location
https://doi.org/10.1016/j.conb.2019.11.015Abstract
The neural logic underlying the conversion of non-stationary (dynamic) olfactory inputs into odor-search behaviors has been difficult to crack due to the distributed nature of the olfactory code - food odors typically co-activate multiple olfactory sensory neurons. In the Drosophila larva, the activity of a single olfactory sensory neuron is sufficient to direct accurate reorientation maneuvers in odor gradients (chemotaxis). In this reduced sensory system, a descending pathway essential for larval chemotaxis has been delineated from the peripheral olfactory system down to the premotor system. Here, I review how anatomical and functional inspections of this pathway have advanced our understanding of the neural mechanisms that convert behaviorally relevant sensory signals into orientation responses.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-