- Main
Mapping a Neutralizing Epitope onto the Capsid of Adeno-Associated Virus Serotype 8
Published Web Location
https://doi.org/10.1128/jvi.00218-12Abstract
Adeno-associated viruses (AAVs) are small single-stranded DNA viruses that can package and deliver nongenomic DNA for therapeutic gene delivery. AAV8, a liver-tropic vector, has shown great promise for the treatment of hemophilia A and B. However, as with other AAV vectors, host anti-capsid immune responses are a deterrent to therapeutic success. To characterize the antigenic structure of this vector, cryo-electron microscopy and image reconstruction (cryo-reconstruction) combined with molecular genetics, biochemistry, and in vivo approaches were used to define an antigenic epitope on the AAV8 capsid surface for a neutralizing monoclonal antibody, ADK8. Docking of the crystal structures of AAV8 and a generic Fab into the cryo-reconstruction for the AAV8-ADK8 complex identified a footprint on the prominent protrusions that flank the 3-fold axes of the icosahedrally symmetric capsid. Mutagenesis and cell-binding studies, along with in vitro and in vivo transduction assays, showed that the major ADK8 epitope is formed by an AAV variable region, VRVIII (amino acids 586 to 591 [AAV8 VP1 numbering]), which lies on the surface of the protrusions facing the 3-fold axis. This region plays a role in AAV2 and AAV8 cellular transduction. Coincidently, cell binding and trafficking assays indicate that ADK8 affects a postentry step required for successful virus trafficking to the nucleus, suggesting a probable mechanism of neutralization. This structure-directed strategy for characterizing the antigenic regions of AAVs can thus generate useful information to help re-engineer vectors that escape host neutralization and are hence more efficacious.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-