Skip to main content
eScholarship
Open Access Publications from the University of California

Kinetic analysis of an efficient DNA-dependent TNA polymerase.

  • Author(s): Horhota, Allen
  • Zou, Keyong
  • Ichida, Justin K
  • Yu, Biao
  • McLaughlin, Larry W
  • Szostak, Jack W
  • Chaput, John C
  • et al.

Published Web Location

https://doi.org/10.1021/ja0428255
Abstract

alpha-l-Threofuranosyl nucleoside triphosphates (tNTPs) are tetrafuranose nucleoside derivatives and potential progenitors of present-day beta-d-2'-deoxyribofuranosyl nucleoside triphosphates (dNTPs). Therminator DNA polymerase, a variant of the 9 degrees N DNA polymerase, is an efficient DNA-directed threosyl nucleic acid (TNA) polymerase. Here we report a detailed kinetic comparison of Therminator-catalyzed TNA and DNA syntheses. We examined the rate of single-nucleotide incorporation for all four tNTPs and dNTPs from a DNA primer-template complex and carried out parallel experiments with a chimeric DNA-TNA primer-DNA template containing five TNA residues at the primer 3'-terminus. Remarkably, no drop in the rate of TNA incorporation was observed in comparing the DNA-TNA primer to the all-DNA primer, suggesting that few primer-enzyme contacts are lost with a TNA primer. Moreover, comparison of the catalytic efficiency of TNA synthesis relative to DNA synthesis at the downstream positions reveals a difference of no greater than 5-fold in favor of the natural DNA substrate. This disparity becomes negligible when the TNA synthesis reaction mixture is supplemented with 1.25 mM MnCl(2). These results indicate that Therminator DNA polymerase can recognize both a TNA primer and tNTP substrates and is an effective catalyst of TNA polymerization despite changes in the geometry of the reactants.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View