- Main
Evaluation of predictive models of aneurysm focal growth and bleb development using machine learning techniques.
Published Web Location
https://doi.org/10.1136/jnis-2023-020241Abstract
BACKGROUND: The presence of blebs increases the rupture risk of intracranial aneurysms (IAs). OBJECTIVE: To evaluate whether cross-sectional bleb formation models can identify aneurysms with focalized enlargement in longitudinal series. METHODS: Hemodynamic, geometric, and anatomical variables derived from computational fluid dynamics models of 2265 IAs from a cross-sectional dataset were used to train machine learning (ML) models for bleb development. ML algorithms, including logistic regression, random forest, bagging method, support vector machine, and K-nearest neighbors, were validated using an independent cross-sectional dataset of 266 IAs. The models ability to identify aneurysms with focalized enlargement was evaluated using a separate longitudinal dataset of 174 IAs. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), the sensitivity and specificity, positive predictive value, negative predictive value, F1 score, balanced accuracy, and misclassification error. RESULTS: The final model, with three hemodynamic and four geometrical variables, along with aneurysm location and morphology, identified strong inflow jets, non-uniform wall shear stress with high peaks, larger sizes, and elongated shapes as indicators of a higher risk of focal growth over time. The logistic regression model demonstrated the best performance on the longitudinal series, achieving an AUC of 0.9, sensitivity of 85%, specificity of 75%, balanced accuracy of 80%, and a misclassification error of 21%. CONCLUSIONS: Models trained with cross-sectional data can identify aneurysms prone to future focalized growth with good accuracy. These models could potentially be used as early indicators of future risk in clinical practice.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-