Skip to main content
eScholarship
Open Access Publications from the University of California

Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO3

  • Author(s): Gao, R
  • Dong, Y
  • Xu, H
  • Zhou, H
  • Yuan, Y
  • Gopalan, V
  • Gao, C
  • Fong, DD
  • Chen, Z
  • Luo, Z
  • Martin, LW
  • et al.
Abstract

© 2016 American Chemical Society. Epitaxial strain can be used to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide an effective route to manipulate material properties. Here, we examine the evolution of the structural motif (i.e., lattice parameters, symmetry, and octahedral rotations) of SrRuO3films grown on substrates engineered to have the same lattice parameters, but different octahedral rotations. SrRuO3films grown on SrTiO3(001) (no octahedral rotations) and GdScO3-buffered SrTiO3(001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transport and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based quantification of the octahedral rotation network reveals that the tilting pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). The abnormal rotation pattern observed in tetragonal SrRuO3indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View