Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Nanoscale optical pulse limiter enabled by refractory metallic quantum wells

Abstract

The past several decades have witnessed rapid development of high-intensity, ultrashort pulse lasers, enabling deeper laboratory investigation of nonlinear optics, plasma physics, and quantum science and technology than previously possible. Naturally, with their increasing use, the risk of accidental damage to optical detection systems rises commensurately. Thus, various optical limiting mechanisms and devices have been proposed. However, restricted by the weak optical nonlinearity of natural materials, state-of-the-art optical limiters rely on bulk liquid or solid media, operating in the transmission mode. Device miniaturization becomes complicated with these designs while maintaining superior integrability and controllability. Here, we demonstrate a reflection-mode pulse limiter (sub-100 nm) using nanoscale refractory films made of Al2O3/TiN/Al2O3 metallic quantum wells (MQWs), which provide large and ultrafast Kerr-type optical nonlinearities due to the quantum size effect of the MQW. Functional multilayers consisting of these MQWs could find important applications in nanophotonics, nonlinear optics, and meta-optics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View