Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Detecting microscopic black holes with neutrino telescopes

Abstract

If spacetime has more than four dimensions, ultrahigh energy cosmic rays may create microscopic black holes. Black holes created by cosmic neutrinos in the Earth will evaporate, and the resulting hadronic showers, muons, and taus may be detected in neutrino telescopes below the Earth's surface. We simulate such events in detail and consider black hole cross sections with and without an exponential suppression factor. We find observable rates in both cases: for conservative cosmogenic neutrino fluxes, several black hole events per year are observable at the IceCube detector; for fluxes at the Waxman-Bahcall bound, tens of events per year are possible. We also present zenith angle and energy distributions for all three channels. The ability of neutrino telescopes to differentiate hadrons, muons, and possibly taus, and to measure these distributions provides a unique opportunity to identify black holes, to experimentally constrain the form of black hole production cross sections, and to study Hawking evaporation. © 2002 The American Physical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View