Skip to main content
eScholarship
Open Access Publications from the University of California

Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

  • Author(s): Webb, MA
  • Jung, Y
  • Pesko, DM
  • Savoie, BM
  • Yamamoto, U
  • Coates, GW
  • Balsara, NP
  • Wang, ZG
  • Miller, TF
  • et al.
Abstract

© 2015 American Chemical Society. Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithiumion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glasstransition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View