Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Synthesis of a terminal Ce(iv) oxo complex by photolysis of a Ce(iii) nitrate complex.

  • Author(s): Assefa, Mikiyas K
  • Wu, Guang
  • Hayton, Trevor W
  • et al.

Reaction of [Ce(NR2)3] (R = SiMe3) with LiNO3 in THF, in the presence of 2,2,2-cryptand, results in the formation of the Ce(iii) "ate" complex, [Li(2,2,2-cryptand)][Ce(κ2-O2NO)(NR2)3] (1) in 38% yield. Photolysis of 1 at 380 nm affords [Li(2,2,2-cryptand)][Ce(O)(NR2)3] (2), in 33% isolated yield after reaction work-up. Complex 2 is the first reported example of a Ce(iv) oxo complex where the oxo ligand is not supported by hydrogen bonding or alkali metal coordination. Also formed during photolysis are [Li(2,2,2-cryptand)]2[(μ3-O){Ce(μ-O)(NR2)2}3] (3) and [Li(2,2,2-cryptand)][Ce(OSiMe3)(NR2)3] (4). Their identities were confirmed by X-ray crystallography. Complex 4 can also be prepared via reaction of [Ce(NR2)3] with LiOSiMe3 in THF, in the presence of 2,2,2-cryptand. When synthesized in this fashion, 4 can be isolated in 47% yield. To rationalize the presence of 2, 3, and 4 in the reaction mixture, we propose that photolysis of 1 first generates 2 and NO2, via homolytic cleavage of the N-O bond in its nitrate co-ligand. Complex 2 then undergoes decomposition via two separate routes: (1) ligand scrambling and oligomerization to form 3; and, (2) abstraction of a trimethylsilyl cation to form a transient Ce(iv) silyloxide, [CeIV(OSiMe3)(NR2)3], followed by 1e- reduction to form 4. Alternatively, complex 4 could form directly via ·SiMe3 abstraction by 2.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View