Skip to main content
eScholarship
Open Access Publications from the University of California

Quantitation and mapping of tissue optical properties using modulated imaging

  • Author(s): Cuccia, DJ
  • Bevilacqua, F
  • Durkin, AJ
  • Ayers, FR
  • Tromberg, BJ
  • et al.

Published Web Location

https://doi.org/10.1117/1.3088140Creative Commons Attribution 4.0 International Public License
Abstract

We describe the development of a rapid, noncontact imaging method, modulated imaging (MI), for quantitative, wide-field characterization of optical absorption and scattering properties of turbid media. MI utilizes principles of frequency-domain sampling and model-based analysis of the spatial modulation transfer function (s-MTF). We present and compare analytic diffusion and probabilistic Monte Carlo models of diffuse reflectance in the spatial frequency domain. Next, we perform MI measurements on tissue-simulating phantoms exhibiting a wide range of l*values (0.5mmto3mm) and (μs′/μa) ratios (8 to 500), reporting an overall accuracy of approximately 6% and 3% in absorption and reduced scattering parameters, respectively. Sampling of only two spatial frequencies, achieved with only three camera images, is found to be sufficient for accurate determination of the optical properties. We then perform MI measurements in an in vivo tissue system, demonstrating spatial mapping of the absorption and scattering optical contrast in a human forearm and dynamic measurements of a forearm during venous occlusion. Last, metrics of spatial resolution are assessed through both simulations and measurements of spatially heterogeneous phantoms. © 2009 Society of Photo-Optical Instrumentation Engineers.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View