Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes


© 2015 Nature Publishing Group Surface plasmons, collective oscillations of conduction electrons, hold great promise for the nanoscale integration of photonics and electronics. However, nanophotonic circuits based on plasmons have been significantly hampered by the difficulty in achieving broadband plasmonic waveguides that simultaneously exhibit strong spatial confinement, a high quality factor and low dispersion. Quantum plasmons, where the quantum mechanical effects of electrons play a dominant role, such as plasmons in very small metal nanoparticles and plasmons affected by tunnelling effects, can lead to novel plasmonic phenomena in nanostructures. Here, we show that a Luttinger liquid of one-dimensional Dirac electrons in carbon nanotubes exhibits quantum plasmons that behave qualitatively differently from classical plasmon excitations. The Luttinger-liquid plasmons propagate at ‘quantized’ velocities that are independent of carrier concentration or excitation wavelength, and simultaneously exhibit extraordinary spatial confinement and high quality factor. Such Luttinger-liquid plasmons could enable novel low-loss plasmonic circuits for the subwavelength manipulation of light.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View