Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Increasing reactivity by incorporating π-acceptor ligands into coordinatively unsaturated thiolate-ligated iron(II) complexes

Abstract

Reported herein is the structural, spectroscopic, redox, and reactivity properties of a series of iron complexes containing both a π-donating thiolate, and π-accepting N-heterocycles in the coordination sphere, in which we systematically vary the substituents on the N-heterocycle, the size of the N-heterocycle, and the linker between the imine nitrogen and tertiary amine nitrogen. In contrast to our primary amine/thiolate-ligated Fe(II) complex, [FeII(SMe2N4(tren))]+ (1), the Fe(II) complexes reported herein are intensely colored, allowing us to visually monitor reactivity. Ferrous complexes with R = H substituents in the 6-position of the pyridines, [FeII(SMe2N4(6-H-DPPN)]+ (6) and [FeII(SMe2N4(6-H-DPEN))(MeOH)]+ (8-MeOH) are shown to readily bind neutral ligands, and all of the Fe(II) complexes are shown to bind anionic ligands regardless of steric congestion. This reactivity is in contrast to 1 and is attributed to an increased metal ion Lewis acidity assessed via aniodic redox potentials, Ep,a, caused by the π-acid ligands. Thermodynamic parameters (ΔH, ΔS) for neutral ligand binding were obtained from T-dependent equilibrium constants. All but the most sterically congested complex, [FeII(SMe2N4(6-Me-DPPN)]+ (5), react with O2. In contrast to our Mn(II)-analogues, dioxygen intermediates are not observed. Rates of formation of the final mono oxo-bridged products were assessed via kinetics and shown to be inversely dependent on redox potentials, Ep,a, consistent with a mechanism involving electron transfer.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View