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Abstract

This paper proposes new, simple, and more accurate statistical tests in a cointegrated
system that allows for endogenous regressors and serially dependent errors. The approach
involves �rst transforming the time series using orthonormal basis functions in L2[0; 1], which
has energy concentrated at low frequencies, and then running an augmented regression based
on the transformed data and constructing the test statistics in the usual way. The approach
is essentially the same as the trend instrumental variable approach of Phillips (2014), but we
hold the number of orthonormal basis functions �xed in order to develop the standard F and
t asymptotic theory. The tests are extremely simple to implement, as they can be carried out
in exactly the same way as if the transformed regression is a classical linear normal regression.
In particular, critical values are from the standard F or t distribution. The proposed F and
t tests are robust in that they are asymptotically valid regardless of whether the number of
basis functions is held �xed or allowed to grow with the sample size. The F and t tests have
more accurate size in �nite samples than existing tests such as the asymptotic chi-squared
and normal tests based on the fully modi�ed OLS estimator of Phillips and Hansen (1990)
and can be made as powerful as the latter test.

JEL Classi�cation: C12, C13, C32

Keywords: Cointegration, F test, Alternative Asymptotics, Nonparametric Series Method, t
test, Transformed and Augmented OLS

1 Introduction

This paper considers a new approach to statistical inference in a triangular cointegrated
regression system. A salient feature of this system is that the I(1) regressors are endogenous. In
addition, to maintain generality of the short run dynamics, we allow the I(0) regression errors to
have serial dependence of unknown forms. One of the most popular semiparametric estimators
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partial research support from NSF under Grant No. SES-1530592.
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in this system is the fully modi�ed OLS (FMOLS) estimator of Phillips and Hansen (1990). The
estimator involves using a long run variance and a half long run variance to remove the long run
joint dependence and endogeneity bias. Both the long run variance and the half long run variance
are estimated nonparametrically. Inference based on the FMOLS is standard � the Wald statistic
is asymptotically chi-squared as in the classical linear regression with stationary or iid data. This
is perhaps one of the most elegant and convenient results in time series econometrics. It releases
us from having to simulate functionals of Brownian motion.

One drawback of the FMOLS method is that the asymptotic chi-squared test often has large
size distortion. The source of the problem is that the estimation errors in the long run vari-
ance and half long run variance have been completely ignored in the conventional asymptotic
framework adopted in Phillips and Hansen (1990). A new ��xed-b�asymptotic framework has
been put forward by Vogelsang and Wagner (2014), but the Wald statistic does not appear to be
asymptotically pivotal, making inference di¢ cult and inconvenient. For this reason, Vogelsang
and Wagner (2014) proceed to propose a di¤erent estimation method called the Integrated Modi-
�ed OLS (IMOLS). They show that the associated test statistics are asymptotically pivotal under
�xed-b asymptotics. However, the limiting distributions are nonstandard, and critical values have
to be simulated.

In the same spirit of Vogelsang and Wagner (2014), we consider an alternative estimation
method that involves �rst transforming the data using orthonormal basis functions and then
running an augmented regression based on the transformed data in the second stage. This gives
rise to our transformed and augmented (TA) OLS (TAOLS) estimator. Augmentation removes
the long run dependence problem, and transformation eliminates the second-order bias that
plagues the OLS estimator.

Our TAOLS estimator is closely related to the trend instrument variable (TIV) estimator of
Phillips (2014). Phillips (2014) considers the augmented regression model in the time domain
and runs an instrumental variable regression using orthonormal basis functions as instruments.
Depending on the trend functions used, the TAOLS and TIV estimators may be numerically
identical or asymptotically equivalent under the asymptotics considered in this paper. In essence,
the two estimators extract the signals on long run comovements in an identical way � both involve
projecting the underlying time series on a set of orthonormal deterministic basis functions.

A key feature of our asymptotic analysis is that the number of basis functions K is held �xed
as the sample size goes to in�nity, leading to our �xed-K asymptotic theory. Compared with
existing methods such as the FMOLS of Phillips and Hansen (1990) and the IMOLS of Vogelsang
and Wagner (2014), our new method enjoys several advantages.

First, under the �xed-K asymptotics, the test statistics based on the TAOLS estimator are
asymptotically standard F or t distributed. Since the critical values from the F and t distributions
are easily available from statistical tables, there is no need to further approximate or simulate
nonstandard limit distributions. In addition, the test statistics can be obtained directly from
statistical programs that can compute the F and t statistics in a classical linear normal regression.
So, our method is practically convenient and empirically appealing in comparison to the IMOLS
method, where the �xed-b limiting distribution is highly nonstandard and the critical values have
to be simulated.

Second, given that the TAOLS estimator is asymptotically equivalent to the TIV estimator of
Phillips (2014), we have also established the �xed-K asymptotics of the TIV estimator and the
associated test statistics. Under the increasing-K asymptotics where K grows with the sample
size at an appropriate rate, Phillips (2014) shows that the Wald statistic and the t statistic are
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asymptotically chi-squared and normal, respectively. While the �xed-K asymptotic distribution
is di¤erent from the increasing-K asymptotic distribution, we show that the �xed-K asymptotic
distribution approaches the increasing-K asymptotic distribution as K increases. As a result, the
�xed-K critical values are asymptotically valid regardless of the type of asymptotics we consider.
This is a robust property enjoyed by our asymptotic F and t tests.

Third, our simulation results show that the asymptotic F and t tests have more accurate size
than existing tests such as the asymptotic chi-squared and normal tests based on the FMOLS
estimator. By choosing K appropriately, the asymptotic F and t tests can be as powerful as the
latter tests. This is based on our simulation evidence. It is also consistent with the asymptotic
e¢ ciency of the TAOLS estimator under the increasing-K asymptotics. The asymptotic e¢ ciency
holds because the TAOLS estimator and the asymptotically e¢ cient FMOLS estimator have the
same asymptotic distribution under the increasing-K asymptotics.

Finally, taking it literally, the �xed-K asymptotics require us to use only low-frequency in-
formation. Fundamentally, what a cointegrating vector measures is the long run relation among
economic time series. For this reason, it is natural to estimate the cointegrating vector using
only the long run variation of the underlying time series. Doing so helps us avoid high-frequency
contaminations. From this perspective, the �xed-K limiting thought experiment not only is an
asymptotic device for developing new and more accurate approximations but also has substantive
empirical content in economic applications.

This paper contributes to a large body of literature on semiparametric estimation of cointe-
grated systems with Phillips and Hansen (1990), Phillips and Loretan (1991), Saikkonen (1991)
and Stock and Watson (1993) as seminal early contributions. In the FMOLS setting, partial
�xed-b asymptotic theory for cointegration inference has been considered by Bunzel (2006) and
Jin, Phillips, and Sun (2006), but the �xed-b asymptotics is applied only to the standard error
estimator; see Vogelsang and Wagner (2014) for further discussion of this. Relative to the TIV
approach of Phillips (2014), the contributions of the current paper lie more in the �xed-K asymp-
totics than in the proposed TAOLS estimator, as the TIV estimator and the TAOLS estimator
turn out to be essentially the same.

Transforming a time series using the basis functions considered in this paper is equivalent
to �ltering the time series with a particular class of linear �lters. The �ltering idea has a long
history; see, for example, the seminal contribution of Thomson (1982). For a textbook treatment,
see Chapter 5 of Stoica and Moses (2005). This idea has been used in nonparametric cointegration
analysis. Bierens (1997) and Müller and Watson (2013) employ basis-function transforms in order
to extract the long run variation and covariation in the underlying time series. Without imposing
a parametric VAR structure as in Johansen (1991), Bierens (1997) proposes nonparametric tests
for the number of cointegrating vectors, which is the same as the degree of rank de�ciency
of a standardized long run variance matrix. Bierens�s test statistics involve functions of the
eigenvalues of this long run variance matrix and have nonstandard limiting distributions. A
variant of Bierens�s method appears in Shintani (2001) who employs kernel long run variance
estimators instead of series long run variance estimators. This idea of using rank de�ciency to
test for the cointegration rank can be traced to Phillips and Ouliaris (1990). Müller and Watson
(2013) use the Neyman-Pearson decision-theoretic framework to design robust and nearly optimal
tests about the cointegrating vectors when they are fully speci�ed under the null hypothesis, that
is, when all the cointegrating vectors are known under the null hypothesis. Both Bierens (1997)
and Müller and Watson (2013) consider a �xed number of basis functions, which is in the same
spirit as the �xed-K asymptotics we consider here. However, our paper has di¤erent objectives:
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our aim is to estimate the cointegrating vector and to conduct inferences on both the full vector
and a subvector.

Basis-function transformations have also been used in heteroskedasticity and autocorrela-
tion robust (HAR) inference. The most recent research along this line was inspired by Phillips
(2005b), although the idea can be traced back to the much earlier literature on the multiple
window method for spectral estimation, started by Thomson (1982). The term �HAR�was �rst
introduced by Phillips (2005a). While the current paper employs basis-function transformation
as a tool to estimate the main parameters of interest, the HAR literature uses them to estimate
the asymptotic variances of parameter estimators, leading to the class of orthonormal series HAR
variance estimators. Using this type of variance estimators, F and t limit theory has been es-
tablished in the HAR literature. See Sun (2011) for trend regressions, Sun (2013) for stationary
moment processes, and Sun (2014c) for highly persistent moment processes. Sun and Kim (2012)
develop the F or t approximation to the J statistic, while Sun and Kim (2015) develop F and
t limit theory in a spatial setting. Hwang and Sun (2017) develop the F or t limit theory in a
two-step generalized method of moments (GMM) framework with a series HAR variance estima-
tor used as the weighting matrix. This paper complements the F and t limit theory established
in these papers. Readers are referred to Müller and Watson (2016) for further discussion on
basis-function transformations and their applications in econometrics.

The rest of the paper is organized as follows. Section 2 introduces a standard linear cointe-
gration regression and discusses some of the drawbacks of existing methods. Section 3 introduces
our TAOLS estimator and establishes the �xed-K asymptotic limits of the TAOLS estimator and
the corresponding Wald statistic. Section 4 considers cointegration analysis under half cosine or
shifted cosine transforms. Section 5 presents simulation evidence. The last section concludes.
Proofs are given in the appendix.

2 Model and Existing Literature

Following Vogelsang and Wagner (2014), we consider the cointegration model

yt = �0 + x
0
t�0 + u0t (1)

xt = xt�1 + uxt

for t = 1; : : : ; T; where yt is a scalar time series and xt is a d � 1 vector of time series with
x0 = Op (1) : The mean-zero error vector ut � (u0t; u0xt)0 2 Rm for m = d+1 is jointly stationary
with long run variance (LRV) matrix 
. We partition 
 as



m�m

=
1X

j=�1
Eutu

0
t�j =

0@ �20
1�1

�0x
1�d

�x0
d�1


xx
d�d

1A ; (2)

and write it as a sum of three conformable components: 
 = �+ �+ �0; where

� :=

1X
j=1

Eut�ju
0
t =

0@ �00
1�1

�0x
1�d

�x0
d�1

�xx
d�d

1A and � := Eutu
0
t =

0@ �00
1�1

�0x
1�d

�x0
d�1

�xx
d�d

1A :

The half long run variance � is de�ned to be

� = �+ � =

�
�00 �0x
�x0 �xx

�
: (3)

4



We assume that 
xx is positive de�nite so that xt is a full-rank integrated process.
We shall assume the Functional Central Limit Theorem (FCLT):

T�1=2
[T �]X
t=1

ut ) B(�) = 
1=2W (�); (4)

where W (�) := (w0(�);W 0
x(�))0 is an m-dimensional standard Brownian process. Also, it will be

convenient in our asymptotic development to represent the process B(�) using the Cholesky form
of 
1=2:

B (�) =
�
B0(�)
Bx(�)

�
=

 
�0�xw0(�) + �0x
�1=2xx Wx(�)



1=2
xx Wx(�)

!
; (5)

where �20�x = �20 � �0x
�1xx�x0 and 

1=2
xx is a symmetric matrix square root of 
xx:

To simplify the discussion, we assume that there is no intercept in the regression. Let X =
[x01; : : : ; x

0
T ]
0 and Y = [y1; : : : ; yT ]

0: The OLS estimator of �0 is given by �̂OLS = (X
0X)�1X 0Y:

It follows from Phillips and Durlauf (1986) and Stock (1987) that

T (�̂OLS � �0) =
 
1

T 2

TX
t=1

xtx
0
t

!�1 
1

T

TX
t=1

xtu0t

!
(6)

)
�Z 1

0
Bx(r)B

0
x(r)dr

��1�Z 1

0
Bx(r)dB0(r) + �x0

�
; (7)

where �x0 re�ects the second-order endogeneity bias.
Since Bx(�) and B0(�) are correlated, and � and hence �x0 are unknown, it is not possible to

make an asymptotically valid inference based on the naive OLS estimator. To overcome these two
problems (correlation Bx(�) and B0(�) and second-order endogeneity bias), Phillips and Hansen
(1990) suggest the FMOLS method that involves estimating 
 and � in the �rst step. Typical
estimators of 
 and � take the following forms:


̂ =
1

T

TX
s=1

TX
t=1

Qh(
s

T
;
t

T
)ûtû

0
s; (8)

�̂ =
1

T

TX
s=1

TX
t=s

Qh(
s

T
;
t

T
)ûtû

0
s; (9)

where ût = (û0t; u
0
xt)

0 and û0t = yt � x0t�̂OLS : In the above de�nitions of 
̂ and �̂, Qh (r; s) is
a symmetric weighting function that depends on the smoothing parameter h: For conventional
kernel LRV estimators, Qh (r; s) = k ((r � s) =b) and we take h = 1=b: For orthonormal series
(OS) LRV estimators, Qh (r; s) := QK (r; s) = K�1PK

j=1 �j (r)�j (s) and we take h = K; where�
�j (r)

	K
j=1

are orthonormal basis functions in L2[0; 1] satisfying
R 1
0 �j (r) dr = 0: For more

background information on OS LRV estimation, see Sun (2011, 2013). We parametrize h in such
a way that h indicates the amount of smoothing for both types of LRV estimators.

After partitioning 
̂ and �̂ in the same way as 
 and �; we de�ne

y+t := yt � �̂0x
̂�1xx�xt;
u+t := ut � �̂0x
̂�1xx�xt; (10)

M := T (�̂x0 � �̂xx
̂�1xx �̂x0):
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Then the FMOLS estimator is given by

�̂FM =
�
X 0X

��1 �
X 0Y + �M

�
; (11)

where Y + = [y+1 ; : : : ; y
+
T ]
0: On the basis of the kernel estimators of 
 and �; Phillips and Hansen

(1990) show that �̂FM is asymptotically mixed normal, that is,

T (�̂FM � �0))MN

 
0; �20�x

�Z 1

0
Bx(r)B

0
x(r)dr

��1!
: (12)

This is in contrast to the limiting distribution of �̂OLS ; which is complicated and has a second-
order endogeneity bias. Based on a consistent estimator �̂20�x of �

2
0�x; one can obtain t and Wald

statistics that are asymptotically normal and chi-squared distributed, respectively.
A key step behind Phillips and Hansen�s result is that 
̂, �̂, and �̂20�x are all approximated by

the respective degenerate distributions concentrated at 
, �, and �20�x. That is, regardless of the
kernel function and the bandwidth used in the nonparametric estimators 
̂, �̂, and �̂20�x, the same
asymptotic approximations are used. However, in �nite samples, both the kernel function and the
bandwidth, especially the latter, do a¤ect the sampling distribution of �̂FM and the associated
test statistics. For this reason, the normal and chi-squared approximations can be very poor in
�nite samples. This is because these approximations completely ignore the estimation uncertainty
in the nonparametric estimators 
̂, �̂, and �̂20�x, which can be very high in �nite samples. Bunzel
(2006) and Jin, Phillips, and Sun (2006) develop partial �xed-b asymptotic theory that accounts
for the estimation uncertainty in �̂20�x but ignores that in 
̂ and �̂.

The degenerate distributional approximations for 
̂; �̂; and �̂20�x with consequential nor-
mal and chi-squared tests are obtained under the conventional increasing-smoothing asymptotic
theory. Instead of the conventional asymptotics, we can use the alternative �xed-smoothing as-
ymptotics to obtain more accurate asymptotic approximations. The �xed-smoothing asymptotics
include the �xed-b asymptotics of Kiefer and Vogelsang (2005) as a special case. For further dis-
cussion of these two types of asymptotics, see Sun (2014a, 2014b). There is a growing number
of papers on �xed-b asymptotic theory for stationary data starting with Kiefer and Vogelsang
(2005). More recently, Vogelsang and Wagner (2014) develop a fully-�edged �xed-b asymptotic
theory for the FMOLS estimator and show that when the estimation uncertainty in 
̂ and �̂ is
accounted for, the FMOLS estimator still su¤ers from a second-order asymptotic bias and has an
asymptotic variance that is much more complex than that given by Phillips and Hansen (1990).
As a result, the Wald and t statistics depend on many nuisance parameters even in the limit, and
this makes the �xed-b asymptotic theory hard to use.

As an alternative solution, Vogelsang and Wagner (2014) suggest the Integrated Modi�ed
OLS (IMOLS) estimator, which is based on partial sums of the original cointegrating regres-
sion augmented by the original regressor. They invoke the �xed-b asymptotics to approximate
the IMOLS test statistics and show that they are asymptotically pivotal. However, their limit-
ing distributions are highly nonstandard; the critical values have to be simulated for practical
implementation.

3 Cointegration Analysis: Augmentation and Transformation

3.1 Model without time trend

To confront several challenges in the literature, we propose an alternative method to estimate
the cointegration model in (1) where no trend is present. We follow Phillips (2014) and consider
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the augmented cointegration model

yt = �0 + x
0
t�0 +�x

0
t�0 + u0�xt; (13)

where �0 = 
�1xx�x0 is the long run regression coe¢ cient of �xt on u0t; and u0�xt = u0t � �00uxt is
the long run regression error of u0t projected onto uxt. The long run variance of u0�xt is �20�x.

Let f�ig1i=1 be a set of orthonormal basis functions in the standard Hilbert space L2[0; 1]:
Our method starts by transforming the original data fyt; x0t;�x0tgTt=1 using the basis functions
f�igKi=1 for a �nite K and then conducts a regression analysis based on the transformed data.
For each i = 1; : : : ;K; the transformed data fW�

ig are weighted averages of the original data:

W�
i =

1p
T

TX
t=1

�i(
t

T
);

Wy
i =

1p
T

TX
t=1

yt�i(
t

T
) =

Y 0�ip
T
; Wx

i =
1p
T

TX
t=1

xt�i(
t

T
) =

X 0�ip
T
; (14)

W�x
i =

1p
T

TX
t=1

�xt�i(
t

T
); W0�x

i =
1p
T

TX
t=1

u0�xt�i(
t

T
);

where �i = [�i(1=T ); : : : ; �i((T � 1) =T ); �i(1)]0 is the basis vector corresponding to the basis
function �i (�) : In the context of (realized) variance estimation, such a transform has been used
in Phillips (2005b), Sun (2006), and Müller (2007), among others.

When �i (r) = �i (1� r), which holds for the Fourier basis functions we use, we can write,
for example,

Wy
i =

1p
T

T�1X
t=0

yT�t�i(
T � t
T

) =
1p
T

T�1X
t=0

yT�t�i(
t

T
): (15)

Therefore,Wy
i can be regarded as the output from applying a linear �lter to fytg

T
t=1 : The transfer

function of this linear �lter is

HTi(!) =
1p
T

T�1X
t=0

�i(
t

T
) exp(�t!) for � =

p
�1: (16)

To capture the long run behavior of the processes, we implicitly require that HTi(!) be concen-
trated around the origin. That is, HTi(!) resembles a band-pass �lter that passes low frequencies
within a certain range and attenuates frequencies outside that range. This requirement can be
met by any low-order trigonometric basis such as

p
2 sin (2�ir) ;

p
2 cos (2�ir) for small i. In

fact, the transfer functions associated with the �rst few basis functions in a commonly-used base
system in L2[0; 1] are often concentrated around the origin, so the requirement can be easily met.

Based on the augmented regression and the transformed data, we have

Wy
i = �0W�

i +Wx0
i �0 +W�x0

i �0 +W0�x
i for i = 1; : : : ;K: (17)

This can be regarded as a cross-sectional regression with K observations. We assume that K is
large enough so that the number of observations is not smaller than the number of non-diminishing
regressors. Obviously, there is no point in considering K > T , as there is no extra information
beyond the �rst T transforms.
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Under the assumption that each function �i (�) is continuously di¤erentiable and satis�esR 1
0 �i (r) dr = 0; which we will maintain, we have

W�
i =

p
T

Z 1

0
�i(r)dr +

p
TO(1=T ) = O(1=

p
T ) = o(1); (18)

and so the e¤ect of the constant term �0 in (17) is asymptotically negligible for a large T . As a
result, our asymptotic theory remains the same regardless of whether an intercept is present. To
simplify the presentation, we will assume without loss of generality that there is no intercept in
the model so that

yt = x0t�0 + u0t; xt = xt�1 + uxt (19)

and
Wy
i =W

x0
i �0 +W�x0

i �0 +W0�x
i for i = 1; : : : ;K. (20)

Putting (20) in vector form, we have

Wy =Wx�0 +W�x�0 +W0�x, (21)

where Wy = (Wy
1; : : : ;W

y
K)

0 and Wx, W�x, and W0�x are de�ned similarly. Running OLS based
on the above equation leads to our transformed and augmented OLS (TAOLS) estimator of

0 = (�

0
0; �

0
0)
0 :


̂TAOLS = ( ~W0 ~W)�1 ~W0Wy;

where ~W =
�
Wx;W�x

�
:

The TAOLS approach is closely related to the trend instrumental variable (TIV) approach of
Phillips (2014), which involves solving

(�̂
0
IV ; �̂

0
IV ) = argmin

(�;�)
(Y �X� ��X�)0�(�0�)�1�0(Y �X� ��X�)

= ( ~X 0P� ~X
0)�1( ~X 0P�Y ), where ~X = [X;�X] and PK = �(�0�)�1�0: (22)

The basis functions � = [�1; :::;�K ] now play the role of instruments for the augmented regression
given in (13). When �0� = IK ; the criterion function in (22) becomes k�0(Y �X� ��X�)k2,
which is the same as



Wy �Wx� +W�x�


2 ; the sum of the squared residuals based on the

transformed and augmented regression in (21). Therefore, when �0� = IK ; the TIV estima-
tor is numerically identical to the TAOLS estimator. We can show that when K is �xed andR 1
0 �i (r)�j (r) ds = 1 fi = jg ; the two estimators are asymptotically equivalent; see Proposition
2.

Let
Px =Wx(Wx0Wx)�1Wx0; P�x =W�x(W�x0W�x)�1W�x0;

and Mx = IK � Px, M�x = IK � P�x: Then we can represent 
̂TAOLS as


̂TAOLS =

�
�̂TAOLS
�̂TAOLS

�
=

�
(Wx0M�xWx)�1(Wx0M�xWy)
(W�x0MxW�x)�1(W�x0MxWy)

�
. (23)

To establish the asymptotic properties of 
̂TAOLS , we make the following assumptions.

Assumption 1 (i) For i = 1; : : : ;K; each function �i (�) is continuously di¤erentiable; (ii) for
i = 1; : : : ;K; each function �i (�) satis�es

R 1
0 �i (x) dx = 0; (iii) the functions f�i (�)gKi=1 are

orthonormal in L2[0; 1]:
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Assumption 2 The vector process fut = (u0t; u0xt)0gTt=1 satis�es the FCLT in (4).

Assumption 1 is mild and is satis�ed by many basis functions. For example, the Fourier basesp
2 cos (2�ir) and

p
2 sin (2�ir) satisfy Assumption 1. Assumption 2 is a standard FCLT for time

series data.
Under Assumptions 1(i) and 2, we have

W0�x
i =

1p
T

TX
t=1

�i(
t

T
)u0�xt =

1p
T

TX
t=1

�i(
t

T
)
�
u0t � �00uxt

�
)

Z 1

0
�i (r) d

�
B0(r)� �00Bx(r)

�
= �0�x

Z 1

0
�i (r) dw0(r)

using the representation in (5). Here the weak convergence follows from summation by parts, the
continuous mapping theorem, and integration by parts. Similarly,

W�x
i )

Z 1

0
�i (r) dBx(r) = 


1=2
xx

Z 1

0
�i (r) dWx(r):

Invoking the continuous mapping theorem again, we have

Wx
i

T
=

1

T 3=2

TX
s=1

�i

� s
T

�
xs =

1

T

TX
s=1

�i

� s
T

� 1p
T

sX
�=1

ux� + op (1)) 
1=2xx

Z 1

0
�i (r)Wx(r)dr;

where the op (1) term follows from the assumption that x0 = Op (1) and Assumption 1(ii).
To provide some intuition, we let

�i =

Z 1

0
�i (r) dw0(r); �i =

Z 1

0
�i (r) dWx(r); and �i =

Z 1

0
�i (r)Wx(r)dr:

Then the TA regression in (20) can be regarded as asymptotically equivalent to the pseudo-
regression

Wy
i � �0i


1=2
xx (T�0) + �

0
i

1=2
xx �0 + �0�x�i for i = 1; : : : ;K. (24)

Because �i is a functional of w0(�), �j and �j are functionals of Wx(�); and w0(�) is independent
of Wx(�); the error term �0�x�i is independent of the regressors f�0j


1=2
xx ; j = 1; : : : ;Kg and

f�0j

1=2
xx ; j = 1; : : : ;Kg: More importantly, Assumption 1(iii) ensures that �0�x�i is iid normal

N(0; �20�x): So the TA regression resembles a classical linear normal regression.
Let

� � (�1; �2; : : : ; �K)
0 2 RK�1;

� � (�1; �2; : : : ; �K)
0 2 RK�d;

� � (�1; �2; : : : ; �K)
0 2 RK�d;

~� =
�
�
1=2xx ; �


1=2
xx

�
; ~� = �0�x�;

and

�T =

0@ T � Id 0
d�d

0
d�d

Id

1A :

9



We can write the pseudo-regression in vector form as

Wy � ~� (�T � 
0) + ~�;

where ~� ? ~� and ~� s N(0; �20�xIK): The theorem below follows easily from the above approximate
formulation. A rigorous proof is given in the appendix.

Theorem 1 Let Assumptions 1 and 2 hold. Then under the �xed-K asymptotics where K is
held �xed as T !1; we have

�T (
̂TAOLS � 
0)) (~�
0~�)�1~�

0
~�:

A direct implication of Theorem 1 is that

T (�̂TAOLS � �0)) �0�x

�1=2
xx

�
�0M��

��1
�0M��; (25)

�̂TAOLS � �0 ) �0�x

�1=2
xx

�
�0M��

��1
�0M��; (26)

where M� = IK � �
�
�0�
��1

�0 and M� = IK � � (�0�)�1 �0: Conditional on (�; �) ; both limiting
distributions are normal:

�0�x

�1=2
xx

�
�0M��

��1
�0M��

d
= N

h
0; �20�x


�1=2
xx (�0M��)

�1
�1=2xx

i
;

�0�x

�1=2
xx

�
�0M��

��1
�0M��

d
= N

h
0; �20�x


�1=2
xx (�0M��)

�1
�1=2xx

i
:

Therefore, the unconditional limiting distributions are mixed normal. Furthermore, there is no
second-order endogeneity bias in the TAOLS estimator. The TAOLS approach has e¤ectively
removed the two problems that plague the naive OLS estimator. The �rst problem, i.e., the
asymptotic dependence between the partial sum processes of the regressor and the regression
error is eliminated because we augment the original regression by the additional regressor �xt.
The second problem, i.e., the second-order endogeneity bias, is eliminated because we transform
the original data and run the regression in the space spanned by the basis functions. In general,
both augmentation and transformation are necessary to achieve asymptotic mixed normality
and asymptotic unbiasedness. However, for some special basis functions, augmentation is not
necessary for the asymptotic mixed normality. See Section 4 for more detail.

The key result that drives the asymptotic unbiasedness of the TAOLS estimator is that

��1T
~W0W0�x =

KX
i=1

(��1T
~Wi)W0�x

i ) ~�
0
~�; (27)

which is mixed normal with mean zero. Note that the corresponding term in the OLS estimator
based on (13) is

��1T
1p
T

TX
t=1

~xt � u0�xt

for ~xt = (x0t;�x
0
t)
0: It is well known that this term has an additive nuisance bias in the limit, which

necessitates theM correction in (11). In contrast, the limit in (27) does not have such an additive
bias term. Like the �partial sum� transforms in Vogelsang and Wagner (2014), basis-function
transforms help eliminate the additive bias. Both types of transforms resemble low-pass �lters
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that reinforce low-frequency components while attenuating high-frequency components. However,
there is an important di¤erence. While basis function transforms make the error process asymp-
totically independent, �partial sum� transforms make it more persistent with a consequential
adverse e¤ect on the asymptotic e¢ ciency. See Vogelsang and Wagner (2014) for more discussion
on the e¢ ciency of the IMOLS estimator as well as its �nite-sample bias-reduction property in
certain scenarios.

We note that the TAOLS estimator �̂ of �0 is not consistent when K is �xed. The consistency
of �̂ can be restored if we consider a di¤erent limiting thought experiment where K increases
with T but at a slower rate. See Phillips (2014) for details.

Proposition 2 Let Assumptions 1 and 2 hold.
(i) Under the �xed-K asymptotics, T (�̂TIV � �0) = T (�̂TAOLS � �0) + op(1):
(ii) Let VK be a random variable with distribution MN

h
0; �20�x


�1=2
xx (�0M��)

�1

�1=2
xx

i
: As-

sume that f�i (�)g1i=1 is a complete orthonormal system in

L20[0; 1] =

�
f (�) 2 L2[0; 1] :

Z 1

0
f (r) dr = 0

�
:

Then as K !1;

VK )MN

"
0; �20�x


�1=2
xx

�Z 1

0

~Wx(r) ~Wx(r)
0dr

��1

�1=2xx

#

where ~Wx(r) =Wx(r)�
R 1
0 Wx (s) ds is the demeaned version of Wx(r):

Given the asymptotic equivalence in Proposition 2, our �xed-K asymptotic theory applies to
the TIV estimator. This can be regarded as a by-product of our paper. The �xed-K asymptotic
theory for the TIV estimator was established by Phillips and Liao (2014, Lemma 5.1), but they
considered only the case with a scalar regressor and did not pursue the limit t approximation
theory established in this paper.

The conditional variance in Proposition 2(ii) is the semiparametric e¢ ciency bound in the
sense of Phillips (1991b). Here we do not aim at achieving the bound per se. Instead, our goal is
to come up with a more accurate approximation for the given K value in a �nite sample situation.
Proposition 2(ii) indicates that the TAOLS estimator could become more e¢ cient for a larger K
and ultimately reach the semiparametric e¢ ciency bound under the increasing-K asymptotics.
So, from this alternative asymptotic point of view, there is no loss of e¢ ciency in our TAOLS
approach.

The asymptotics in Proposition 2(ii) is obtained for a �xed K as T ! 1 and then letting
K !1. This is a type of sequential asymptotics. The sequential asymptotics provides a smooth
transition from our �xed-K asymptotics to the increasing-K asymptotics in Phillips (2005, 2014).

We note that for the TIV estimator Phillips (2014) considers only the increasing-K asymp-
totics under which T and K go to in�nity and K=T ! 0. A careful inspection of his proof
shows that it applies to the TAOLS estimator as well. Thus, in e¤ect, Phillips (2014) has also
established the increasing-K asymptotics for the TAOLS estimator. More speci�cally, assume
that f�i (�)g1i=1 is a complete orthonormal system in

L20[0; 1] :=

�
f (�) 2 L2[0; 1] :

Z 1

0
f (r) dr = 0

�
:
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Then under the linear process assumption and rate condition given in his equations (L) and (R),
we have

T (�̂TAOLS � �0))MN

"
0; �20�x


�1=2
xx

�Z 1

0

~Wx(r) ~Wx(r)
0dr

��1

�1=2xx

#
; (28)

where ~Wx(r) =Wx(r)�
R 1
0 Wx (s) ds is the demeaned version ofWx(r): The above result is slightly

di¤erent from what is given in the main theorem of Phillips (2014, page 213). The di¤erence
arises because we require the basis functions to integrate to zero in order to accommodate an
intercept in the cointegration model. The cointegration model considered in Phillips (2014) has
no intercept, and so the basis functions do not have to integrate to zero. This di¤erence is
innocuous, and the proof in Phillips (2014) goes through with only minor modi�cations.

The asymptotic mixed normality and unbiasedness of the TAOLS estimator facilitate hypoth-
esis testing. Suppose that we are interested in testing

H0 : R�0 = r vs. H1 : R�0 6= r; (29)

where R is a p�d matrix. If �20�x is known, then we would construct the following Wald statistic:

~F (�̂TAOLS) =
1

�20�x
(R�̂TAOLS � r)0

�
R(Wx0M�xWx)�1R0

��1
(R�̂TAOLS � r)=p:

When p = 1, we would construct the following t statistic:

~t(�̂TAOLS) =
R�̂TAOLS � rp

�20�xR(Wx0M�xWx)�1R0
:

Under the null hypothesis in (29), we can invoke Theorem 1 to obtain

~F (�̂TAOLS)) Q0[ ~R
�
�0M��

��1 ~R0]�1Q=p; (30)

where
~R = R
�1=2xx and Q = ~R(�0M��)

�1�0M��: (31)

By construction, Q follows the mixed normal distribution MN
h
0; ~R (�0M��)

�1 ~R0
i
: Conditional

on ~R (�0M��)
�1 ~R0;

Q0[ ~R
�
�0M��

��1 ~R0]�1Q=p s �2p=p:

The conditional distribution does not depend on the conditioning variable ~R (�0M��)
�1 ~R0: So

�2p=p is also the unconditional distribution. That is, the infeasible test statistic ~F (�̂TAOLS)

converges in distribution to �2p=p: Similarly, ~t(�̂TAOLS) converges in distribution to the standard
normal distribution.

The presence of the unknown long run variance �20�x in ~F (�̂TAOLS) and ~t(�̂TAOLS) hinders
their practical application. In practice, we have to estimate �20�x in order to construct the test
statistics. Given that �20�x is the approximate variance of the error term in the TAOLS regression,
it is natural to estimate �20�x by

�̂20�x =
1

K

KX
i=1

�
Ŵ0�x
i

�2
=
1

K
W0�x0

h
IK � ~W( ~W0 ~W)�1 ~W0

i
W0�x;
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where Ŵ0�x
i = Wy

i �Wx0
i �̂TAOLS �W�x0

i �̂TAOLS : With the estimator �̂20�x; we can construct the
feasible F (�̂TAOLS) and t(�̂TAOLS) as follows:

F (�̂TAOLS) =
1

�̂20�x
(R�̂TAOLS � r)0

�
R(Wx0M�xWx)�1R0

��1
(R�̂TAOLS � r)=p; (32)

t(�̂TAOLS) =
R�̂TAOLS � rq

�̂20�xR(Wx0M�xWx)�1R0
:

The theorem below establishes the limiting null distributions of F (�̂TAOLS) and t(�̂TAOLS)
under the �xed-K asymptotics.

Theorem 3 Let Assumptions 1 and 2 hold. Under the �xed-K asymptotics, we have

F (�̂TAOLS))
K

K � 2d � Fp;K�2d and

t(�̂TAOLS))
r

K

K � 2d � tK�2d;

where Fp;K�2d is the F distribution with degrees of freedom p and K � 2d, and tK�2d is the t
distribution with degrees of freedom K � 2d:

Theorem 3 shows that both F (�̂TAOLS) and t(�̂TAOLS) are asymptotically pivotal and have
standard limiting distributions. From an asymptotic point of view, the TA regression is equiv-
alent to a classical linear normal regression (CLNR), and so the F and t limit theory is not
surprising. The standard F and t limit distributions we obtain here are in sharp contrast with
the nonstandard limiting distributions in Vogelsang and Wagner (2014). A great advantage of
our approximations is that the critical values can be obtained from statistical tables and software
packages. There is no need to simulate nonstandard critical values.

Our asymptotic distributions are also in sharp contrast to the chi-squared (�2p=p) and stan-
dard normal distributions. The latter distributions are the weak limits for the infeasible test
statistics. In fact, under the increasing-K asymptotics as developed in Phillips (2014), the latter
distributions are also the weak limits of the feasible statistics F (�̂TAOLS) and t(�̂TAOLS): So
the increasing-K asymptotics e¤ectively assume that �20�x is known in large samples, and hence
completely ignore the estimation uncertainty in �̂20�x:

To compare the critical values from the �xed-K approximation with those from the increasing-
K approximation, we consider the Wald-type test as an example. Let F�p;K�2d and �

�
p be the

(1� �) quantiles from the standard Fp;K�2d and �2p distributions, respectively. Then we can use
the modi�ed F critical value K=(K � 2d)F�p;K�2d to carry out our F test. This critical value is
larger than the scaled chi-squared critical value ��p =p for two reasons. First, F

�
p;K�2d > ��p =p;

because the F distribution Fp;K�2d has a random denominator, unlike the corresponding chi-
squared distribution. Second, the multiplicative factor K=(K � 2d) is greater than 1. The
di¤erence between the two critical values depends on the value of K: It can be quite large when
K is small. However, as K increases, K=(K � 2d)F�p;K�2d approaches ��p =p. There is a smooth
transition from a �xed-K critical value to the corresponding increasing-K critical value. So, the
critical value K=(K � 2d)F�p;K�2d is asymptotically valid regardless of whether K is held �xed or
allowed to grow with the sample size. In this sense, K=(K�2d)F�p;K�2d is a robust critical value.
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To investigate the power of the F and t tests, we consider the local alternative hypothesis

H1T : R�0 = r + �=T for some � 2 Rp:

The following theorem establishes the limiting distributions of F (�̂TAOLS) and t(�̂TAOLS) under
H1T :

Theorem 4 Let Assumptions 1 and 2 hold. Under H1T ; we have

F (�̂TAOLS))
K

K � 2dFp;K�2d(k�k
2)

t(�̂TAOLS))
r

K

K � 2d � tK�2d (�) for p = 1

as T !1 for a �xed K; where

� =

h
R


�1=2
xx (�0M��)

�1

�1=2
xx R0

i�1=2
�

�0�x
;

and Fp;K�2d (�) and tK�2d (�) are noncentral F and t distributions with noncentrality parameters
k�k2 and �; respectively.

Since � is random, the asymptotic distributions are mixed noncentral F and t distributions.
The mixed distributions are analogous to the mixed chi-squared or normal distribution we would
get in the conventional FMOLS framework. More broadly, asymptotic mixed noncentral distrib-
utions are typical for experiments that have the local asymptotic mixed normality property.

Under the null hypothesis, Theorem 3 shows that the basis functions have no e¤ect on the
asymptotic distributions. Under the local alternative, Theorem 4 shows that the e¤ect of the
basis functions on the asymptotic distributions is manifested through the noncentrality parameter
� only. Let � (x) = (�1 (x) ; : : : ; �K (x))

0 be the vector of basis functions and A be any orthogonal
matrix, then it is easy to see that � will not change if A� (x) is used as the vector of basis functions
instead. A direct implication is that the power of the F or t test is invariant to rotations of the
basis functions.

For a given value of K; we may choose the basis functions to maximize the local asymptotic
power, say P [Fp;K�2d(k�k2) > F�p;K�2d]: This is not an easy task, as, in general, � and � are not

independent of each other. The optimal choice may also depend on R
�1=2xx and the direction of
the local departure characterized by �: We leave this to future research.

3.2 Model with a linear trend

In this subsection, we consider a more general version of (1) by including a linear time trend in
the cointegration model. The model is now given by

yt = x0t�0 + �0t+ u0t; (33)

xt = xt�1 + uxt:

De�ne Wtr
i = T�1=2

XT

t=1
�i(t=T )t for i = 1; : : : ;K and Wtr = (Wtr

1 ; : : : ;Wtr
K)

0: Then the

transformed regression in (19) is naturally generalized to

Wy
i =W

x0
i �0 +W�x0

i �0 +Wtr
i �0 +W0�x

i for i = 1; : : : ;K: (34)
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As we discussed earlier, an intercept can be included in (33) and (34), but our approach is
asymptotically invariant to location shifts. The TAOLS estimator for �0; �0; and �0 is now given
by

(�̂
0
TAOLS ; �̂

0
TAOLS ; �̂

0
TAOLS)

0 = ( ~W0
tr
~Wtr)

�1 ~W0
trWy; (35)

where ~Wtr =
�
Wx; W�x;Wtr

�
:

Let

Ŵ0�x
i;tr = Wy

i �W
x0
i �̂TAOLS �W�x0

i �̂TAOLS �Wtr
i �̂TAOLS ;

(�̂tr0�x)
2 = K�1

KX
i=1

(Ŵ0�x
i;tr)

2:

Then we can construct the Wald statistic and t statistic as follows:

Ftr(�̂TAOLS) =
1

(�̂tr0�x)
2
(R�̂TAOLS � r)

�
R(Wx0M�x;trWx)�1R0

��1
(R�̂TAOLS � r)=p;

ttr(�̂TAOLS) =
R�̂TAOLS � rq

(�̂tr0�x)
2R(Wx0M�x;trWx)�1R0

;

where M�x;tr = IK �W�x;tr

�
W0
�x;trW�x;tr

��1
W0
�x;tr and W�x;tr =

�
W�x;Wtr

�
:

Theorem 5 Let Assumptions 1 and 2 hold. Assume that a :=
�R 1
0 �1 (r) rdr; � � � ;

R 1
0 �K (r) rdr

�0
6=

0: Under the �xed-K asymptotics, we have (i)

�T;tr

0@ �̂TAOLS � �0
�̂TAOLS � �0
�̂TAOLS � �0

1A)

0B@ �0�x

�1=2
xx (�0M�;a�)

�1 �0M�;a�

�0�x

�1=2
xx

�
�0M�;a�

��1
�0M�;a�

�0�x (a0M�;�a)
�1 a0M�;��

1CA ; (36)

where

�T;tr =

�
�T 0

0 T 3=2

�
and M� is the projection matrix projecting onto the orthogonal complement of the column space
of �:

(ii) Under the null hypothesis H0 : R�0 = r; we have

Ftr(�̂TAOLS))
K

K � 2d� 1Fp;K�2d�1 and ttr(�̂TAOLS))
r

K

K � 2d� 1 tK�2d�1: (37)

(iii) Under the local alternative hypothesis H1T : R�0 = r + �=T; we have

Ftr(�̂TAOLS) ) K

K � 2d� 1Fp;K�2d�1(k�k
2) (38)

and ttr(�̂TAOLS) )
r

K

K � 2d� 1 tK�2d�1 (�) , (39)

where

� =

h
R


�1=2
xx (�0M�;a�)

�1

�1=2
xx R0

i�1=2
�

�0�x
:
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Theorems 5(ii) and (iii) are entirely analogous to Theorems 3 and 4. The e¤ect of having
an additional trend regressor Wtr

i is re�ected by the adjustment in the multiplicative correction
factor and the degrees of freedom in the limiting F and t distributions.

Again, the asymptotic F and t limit theory resembles the standard theory in the CLNR with
K iid observations. The multiplicative correction is a type of degrees-of-freedom correction. Had
we followed the standard practice in the CLNR and de�ned

(�̂tr0�x)
2 =

1

K � 2d� 1

KX
i=1

(Ŵ0�x
i;tr)

2; (40)

we would not have to make the multiplicative correction. That is, the (scaled) Wald statistic
would be asymptotically F distributed, and the t statistic would be asymptotically t distributed.

Observing that we compute the standard error of the TAOLS estimator in the same way we
would if the errors in the transformed regression are homoskedastic, which does hold in large
samples, our Wald statistic Ftr(�̂TAOLS) with (40) as the error variance estimator is numerically
identical to the F statistic based on the residual sum of squares under the restricted and un-
restricted models. So, we can obtain Ftr(�̂TAOLS) (and ttr(�̂TAOLS)) from the output of any
simple and very basic regression program as long as it works at least for the CLNR with ho-
moskedastic errors. The only step that we have to take is to get the data into the transformed
form. It should be noted, however, that we do not include the intercept in the transformed and
augmented regression when the basis functions satisfy

R 1
0 �i (x) dx = 0:

As a by-product, we can perform a test of endogeneity, that is, the test of whether �0 = 0;
in exactly the same way we would if the transformed regression is a CLNR. This can be justi�ed
asymptotically using the same argument as in the proof of Theorem 5. We note that the test will
be inconsistent for a �xed K; but our focus here is on obtaining more accurate approximations.
The �xed-K asymptotics do not require that we �x the value of K in �nite samples. In fact, in
empirical applications the sample size T is usually given beforehand, and the value of K needs to
be determined using a priori information and/or information obtained from the data. While the
selected value of K may be relatively large for large T , it is also true that it is a �nite value for
any given sample. Plugging this �nite value into the �xed-K asymptotic distribution gives us a
practical way to use the �xed-K approximation even when K is data-driven. As we have already
shown, the �xed-K critical value so obtained is asymptotically valid under the increasing-K
asymptotics.

If we have the polynomial trends (t; t2; : : : ; tg) for any integer g instead of a linear trend, then
the proof of Theorem 5 can be invoked to establish the asymptotic distributions under the null
and the local alternative. For example, under the null H0 : R�0 = r, we can show that when
K > 2d+ ~g;

Ftr(�̂TAOLS))
K

K � 2d� gFp;K�2d�~g and ttr(�̂TAOLS))

s
K

K � 2d� g tK�2d�~g; (41)

where

~g = rank

�Z
(�1 (r) ; � � � ; �K (r))0

�
r; r2; � � � ; rg

�
dr

�
(42)

and 2d + ~g is now the e¤ective number of parameters to be estimated. The �nite-sample
analogue of ~g is just the rank of Wtr; the transformed trend matrix. If clsp fr; � � � ; rgg \
[clsp f�1 (r) ; � � � ; �K (r)g]? = f0g ; where �clsp�stands for the closed linear span, then ~g = g: If
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some nonzero linear combination of the polynomial trends belongs to clsp
�
�K+1 (r) ; �K+2 (r) ; � � �

	
;

then ~g < g: For the Fourier basis functions, clsp f�1 (r) ; � � � ; �K (r)g is a lower-frequency space,
as the energy of each non-zero function in this space concentrates only on lower frequencies.
Correspondingly, its orthogonal complement [clsp f�1 (r) ; � � � ; �K (r)g]? is a higher-frequency
space. Given that there does not exist any nontrivial linear combination of the polynomial
trends whose energy concentrates only on the higher frequencies, we have clsp fr; � � � ; rgg \
[clsp f�1 (r) ; � � � ; �K (r)g]? = f0g, and so ~g = g:

The above comments apply to any set of trend functions. For more general trend functions,
we de�ne ~g in the same manner as in (42) but with

�
r; r2; � � � ; rg

�
replaced by the general trend

functions. In some statistical packages such as STATA, we do not even need to compute ~g theo-
retically. When ~g < g and the sample size is large enough, STATA will notice a multicollinearity
problem and retain only ~g transformed trend variables to avoid the multicollinearity. The as-
ymptotic F test and t test can then be performed based on the new transformed and augmented
regression.

It is important to point out that under the �xed-K asymptotics the exact forms of the trend
functions and hence their transforms have to be known in order to ensure the consistency of the
TAOLS estimator �̂TAOLS . If the trend functions are misspeci�ed, then the TAOLS estimator
is in general inconsistent. However, if K is large and the trend functions are smooth enough
that they can be well approximated by a linear combination of a su¢ ciently large subset of the
basis functions, we can include this subset of basis functions in the TA regression. This will help
control for the unknown trend functions and reduce the asymptotic bias of the TAOLS estimator.
To eliminate the asymptotic bias altogether, we have to let K grow with the sample size T at
some rate, and we are no longer in the domain of the �xed-K asymptotics but instead move into
the domain of the increasing-K asymptotics. So, if K is held �xed literally, then the �xed-K
asymptotics is not robust to trend misspeci�cation. This is in contrast with the increasing-K
asymptotics under which the TAOLS estimator can still be made consistent, even if the exact
forms of the trend functions are not known. However, as we discussed before, we do not have
to �x the value of K in order to use the �xed-K asymptotic approximations. Even if K grows
with the sample size T; we can still use the �xed-K critical values (i.e., F and t critical values),
as they remain valid under the increasing-K asymptotics.

3.3 The form of basis functions

We consider the following two sets of basis functions on L2[0; 1] :

Fourier basis functionsn
�2j�1 (r) =

p
2 cos (2j�r) ; �2j =

p
2 sin (2j�r) ; j = 1; : : : ;K=2

o
; (43)

Cosine basis functions n
�j (r) =

p
2 cos (j�r) ; j = 1; : : : ;K

o
: (44)

Both sets contain orthonormal basis and satisfy Assumption 1. If we let K !1; then the or-
thonormal basis functions in both sets are complete. Fourier basis functions are the standard and
commonly used basis functions. Cosine basis functions are the eigenfunctions of the covariance
kernel of the demeaned Brownian motion.

Another commonly used set of trigonometric basis functions consists of the sine basis functions
f
p
2 sin (j�r)gKj=1 and f

p
2 sin ((j � 1=2)�r)gKj=1, which are the eigenfunctions of the covariance
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kernel of the standard Brownian bridge and Brownian motion, respectively. However, they cannot
be used directly, as they do not satisfy Assumption 1(ii).

From a theoretical point of view, any orthonormal basis can be used. For example, one may
use the Legendre polynomials (shifted and renormalized):n

�j (r) =
p
2j + 1Pj (2r � 1) ; j = 1; : : : ;K

o
; (45)

where

Pj (s) =
1

2jj!

dj

dsj
�
s2 � 1

�j
for s 2 [�1; 1]

are the standard Legendre polynomials. Our simulation study not reported here shows that
Legendre polynomials do not deliver an accurate F test or t test in �nite samples when high-
order polynomials are used. The main reason is that while these polynomials are orthonor-
mal in L2[0; 1]; i.e.,

R 1
0 �i (r)�j (r) dr = 1 fi = jg ; the discrete version of the integral, namely,

T�1
PT
t=1 � (i=T )�(j=T ); may not be close to 1 fi = jg ; especially when i and j are large. So

even if u0�x;t is iid N(0; �2); the transformed error W0�x
i may be far from being iid N(0; �2) in

�nite samples. This can lead to substantial �nite-sample size distortion. In contrast, for the two
sets of trigonometric basis functions given earlier, we can show that because of cancellations,�����T�1

TX
t=1

� (i=T )�(j=T )� 1 fi = jg
����� � 2=T

for all integers i; j 2 [1; T ): In fact, for Fourier basis functions, T�1
PT
t=1 � (i=T )�(j=T ) is exactly

equal to 1 fi = jg : For this reason, we recommend using the trigonometric basis functions, and
hereinafter we do not consider other basis functions such as Legendre polynomials.

3.4 The number of basis functions

In principle, we can use any �nite number of orthonormal basis functions in our �xed-K frame-
work. However, Proposition 2 indicates that a larger K leads to a more e¢ cient estimator. On
the other hand, when K is too large, the TAOLS estimator will su¤er from the asymptotic bias
that is not captured by the �xed-K asymptotics. For example, if we set K equal to the sample
size, which is the upper bound for K; the TAOLS estimator will be the same as the augmented
OLS estimator, which su¤ers from second-order asymptotic bias. Thus there is an opportunity
to select K to trade o¤ the variance e¤ect with the bias e¤ect.

A direct approach to a data-driven choice of K is to �rst develop a high-order expansion
of �̂TAOLS from which we obtain the approximate mean squared error (AMSE) of �̂TAOLS and
then select K to minimize the AMSE of �̂TAOLS : For hypothesis testing, a direct approach is
to choose K to minimize the Type II error of our proposed F test or t test subject to a control
of the Type I error. The direct approaches are ambitious. Phillips (2014) discusses some of the
technical challenges behind the direct approaches. We leave them for future research.

An indirect approach that appears to work reasonably well is based on the bias and variance
of the LRV estimator. Following a large literature on LRV estimation, Phillips (2005b) proposes
selecting K by minimizing the AMSE of 
̂ de�ned in (8). In the present setting, we have


̂ =
1

K

KX
i=1

�
Ŵu
i

��
Ŵu
i

�0
for Ŵu

i =
1p
T

TX
t=1

ût�i(
t

T
);
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where either ût = (yt�xt�̂OLS ;�x0t)0 or ût = (yt�xt�̂OLS� �̂OLSt;�x0t)0; depending on whether
a linear trend is present or not. For the Fourier basis functions and cosine basis functions, the
AMSE-optimal K� for estimating 
̂ is given by

K�
MSE =

&�
tr(Im2 +Kmm)(

 
)
4vec (B)0 vec (B)

�1=5
T 4=5

'

for B = ��
2

6

1X
h=�1

h2�u(h); �u(h) = Eutu
0
t�h; (46)

where Kmm is the m2 �m2 commutation matrix and Im2 is the m2 �m2 identity matrix. It is
important to point out that the above formula is based on the AMSE of the LRV estimator 
̂,
which is related to the TAOLS estimator but is essentially a di¤erent problem. Therefore, the
above rule of selecting K should be regarded as only a rule of thumb.

Recall that K has to be large enough to ensure that the regressors in the TA regression are
not perfectly multicollinear. In the absence of a trend, it is necessary to have K � 2d: For one of
his tests, Bierens (1997) recommends the rule-of-thumb value K = 2d: In our setting, the limiting
distribution of the Wald statistic is the F distribution with the denominator degrees of freedom
K � 2d. For this F distribution to have a �nite mean, we require K � 2d � 3; i.e., K � 2d+ 3:
So in �nite samples it is reasonable to set K equal to K�

MSE;c with

K�
MSE;c = max(2d+ 3;K

�
MSE): (47)

When a linear trend is included, we make an obvious adjustment and set K equal to the following
K�
MSE;c:

K�
MSE;c = max(2d+ 4;K

�
MSE): (48)

There is another reason to avoid a large K. Cointegration is fundamentally a long run
relationship. To estimate the cointegrating vector, we should employ a regression that uses only
the long run variation of the underlying variables. The short run variation can help only when the
short run relationship coincides with the long run relationship. If the two types of relationships
di¤er from each other, then going beyond a reasonable value of K runs the risk of being struck
by short run contaminations. A trade-o¤ between the asymptotic e¢ ciency and robustness with
respect to short run contaminations leads us to consider a moderate K value.

When the Fourier basis functions (43) are used, the transformed data consist of the real and
imaginary parts of the discrete Fourier transforms of the original data. In this case, a useful
rule-of-thumb choice is suggested by Müller (2014) and Müller and Watson (2013). These papers
propose selecting a K value to re�ect business-cycle frequencies or below. For example, with
T = 64 years of post-World-War-II macro data, the choice of K = 16 captures the long run
movements of macro data with periodicity higher than the commonly accepted business-cycle
period of T= (K=2) = 8 years. Most recently, after extensive simulations, Lazarus, Lewis, Stock
and Watson (2016) suggest choosing K = 8 for HAR inference. To follow the �xed-K spirit in
the strictest sense, we will consider both K = 8 and K = 16 in our simulations.
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4 Cointegration Analysis with Shifted Cosine Bases

4.1 Model without time trend

We go back to the model without an intercept and time trend, i.e., the model in (19); but we
drop the augmented term in (20) and consider the following equation

Wy
i =W

x0
i �0 +W0

i (49)

where by de�nition

W0
i =W�x0

i �0 +W0�x
i =

1p
T

TX
t=1

u0t�i

�
t

T

�
:

De�ne the transformed OLS (TOLS) estimator �̂TOLS to be

�̂TOLS =
�
Wx0Wx

��1Wx0Wy: (50)

In general, dropping W�x
i in (20) will lead to an omitted variable bias unless the correlation

between W�x and Wx is zero. The zero correlation is ensured by the following assumption.

Assumption 3 The basis functions satisfy
R 1
0 	i(r)�j (r) dr = 0 with 	i(r) =

R r
0 �i (s) ds for

i; j = 1; :::;K:

Recall that

Wx
i

T
) 
1=2xx

Z 1

0
�i(r)Wx(r)dr = �
1=2xx

Z 1

0
	i(r)dWx (r) ;

W0
j ) �0�x

Z 1

0
�j (r) dw0(r) + �0x


�1=2
xx

Z 1

0
�j(r)dWx (r) ; (51)

for i; j = 1; :::;K where w0 (r) and Wx(r) are independent Brownian motion processes. The
asymptotic distribution of (Wx

i =T;W0
j ) is jointly normal with covariance

cov
�Z 1

0
�i(r)Bx(r)dr;

Z 1

0
�j(r)dB0(r)dr

�
= �
1=2xx

�Z 1

0
	i(r)�j (r) dr

�

�1=2xx �x0:

Thus, T�1Wx
i andW�x

j are asymptotically independent if the basis functions satisfy Assumption
3.

Lemma 6 The cosine functions

�cj(r) =
p
2 cos (2j�r) for j = 1; :::;K (52)

satisfy Assumptions 1 and 3.

The lemma not only shows that Assumption 3 can hold but also gives the set of simple and
commonly-used cosine functions as an example. Although there may be other functions that
satisfy Assumption 3, we have the cosine functions in mind when developing the asymptotic
results in this section. We are not aware of other commonly-used basis functions that also satisfy
Assumption 3.
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Theorem 7 Consider the model in (19). Let Assumptions 1�3 hold. Under the �xed-K asymp-
totics, we have

T (�̂TOLS � �0))MN
�
0; �20


�1=2
xx (�0�)�1
�1=2xx

�
:

It is interesting to see that the transformed OLS estimator is asymptotically unbiased and
mixed normal. To some extent, the use of the special basis functions such as the cosine functions
kills two birds with one stone. There is no need to augment the original regression in order to
achieve the asymptotic mixed normality.

Given the mixed normality of the limiting distribution, it is reasonable to make inference
based on �̂TOLS : The Wald statistic and t statistic are

Fc(�̂TOLS) =
1

(�̂c0)
2 (R�̂TOLS � r)

0
h
R
�
Wx0Wx

��1
R0
i�1

(R�̂TOLS � r)=p; (53)

tc(�̂TOLS) =
R�̂TOLS � r

�̂c0

q
R (Wx0Wx)�1R0

; (54)

where

(�̂c0)
2 =

1

K

KX
i=1

�
Ŵ0
ci

�2
where Ŵ0

ci =W
y
i �W

x0
i �̂TOLS :

Following a proof similar to that of Theorem 3, we can show that

Fc(�̂TOLS))
K

K � d � Fp;K�d and tc(�̂TOLS))
r

K

K � d � t(K � d):

The above results are clearly analogous to the well-known results in a CLNR with K iid obser-
vations and d regressors.

4.2 Model with a linear trend

We consider the cointegration system with a linear trend as given in (33). Dropping the regressors
W�x
i and Wtr

i in (34), we obtain

Wy
i =W

x0
i �0 +

�
Wtr
i �0 +W0

i

�
for i = 1; :::;K (55)

whereWtr
i �0+W0

i =Wtr
i �0+W�x0

i �0+W0�x
i is the composite error. In general, the transformed

OLS estimator obtained by regressing Wy
i on Wx

i is not consistent even if cosine transforms are
used. The reason is that the composite error is not mean zero and is correlated with the included
regressor. In fact,

Wtr
i =

p
2p
T

TX
t=1

t cos(
2�it

T
) = T

p
2T

"
1

T

TX
t=1

t

T
cos(

2�it

T
)

#

= T
p
2T

�Z 1

0
r cos (2�ir) dr +O

�
1

T

��
= O(

p
T ) (56)

using
R 1
0 r cos (2�ir) dr = 0: So the composite error grows with the sample size at the rate of

p
T ,

and as a result the transformed OLS estimator obtained in the absence of the trend term is not
consistent.
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A simple way to �x this problem is to use shifted cosine transforms. Let

�cT i(r) = �ci (r �
1

2T
) =

p
2 cos

�
2�i(r � 1

2T
)

�
for i = 1; :::;K (57)

be the �nite sample shifted version of f�ci (r)g
K
i=1

1: We de�ne

�Wv
i =

1p
T

TX
t=1

vt�
c
T i

�
t

T

�
for v = y; x; �x and (58)

�Wtr
i =

1p
T

TX
t=1

t�cT i

�
t

T

�
; �W0

i =
1p
T

TX
t=1

u0t�
c
T i

�
t

T

�
: (59)

It follows from Lemma 8 in Bierens (1997) that �Wtr
i = 0 for any i = 1; :::;K. Also, it is easy

to show that T�1=2
PT
t=1 �

c
T i (t=T ) = 0 for all i = 1; :::;K: So utilizing f�cT i (r)gKi=1 as the basis

functions �lters out both the intercept and linear trend in the original equation (33)2: As a result,
we have

�Wy
i =

�Wx0
i �0 +

�W0
i for i = 1; :::;K: (60)

On the basis of this equation, the transformed OLS estimator of �0 is given by

�̂TOLS =
�
�Wx0 �Wx

��1
�Wx0 �Wy.

In view of �cT i(r) = �ci (r) +O(1=T ) uniformly for r 2 [0; 1], we have

�Wx
i ) 
1=2xx �i

d
= 
1=2xx

Z 1

0
�ci (r)Wx(r)dr;

�W�x
j ) 
1=2xx �j

d
= 
1=2xx

Z 1

0
�cj (r) dWx(r); (61)

for i; j = 1; :::;K; and �Wx
i and �W�x

j are asymptotically independent. Using these and the same
proof for Theorem 7, we can prove the theorem below.

Theorem 8 Consider the model in (33). Let Assumptions 1 and 2 hold. Suppose that the shifted
cosine transforms are used. Then under the �xed-K asymptotics,

T (�̂TOLS � �0))MN
�
0; �20


�1=2
xx (�0�)�1
�1=2xx

�
:

It follows from the theorem and the arguments similar to the proof of Theorem 3 that

Fc(�̂TOLS))
K

K � d � Fp;K�d and tc(�̂TOLS))
r

K

K � d � t(K � d); (62)

where Fc(�̂TOLS) and tc(�̂TOLS) are de�ned in the same way as in (53) and (54).

1The cosine weight functions �cTi (t=T ) are known as Chebishev time polynomials of even orders. See Hamming
(1973) for details. Bierens (1997) shows that the cosine basis functions enjoy a certain optimality property for
hypothesis testing.

2Sun (2011) also uses the cosine basis functions in OS LRV estimation in order to achieve invariance with respect
to the intercept and linear trend.
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For a cointegration model without a trend, it is not hard to show that Theorem 7 and
the asymptotic results for the test statistics thereafter remain the same if we use the shifted
cosine transforms in place of the original cosine transforms. That is, for a cointegration model
without a trend, it does not matter asymptotically whether the shifted cosine transforms or
the original cosine transforms are employed. However, the shifted cosine transforms lead to the
TOLS estimator that is invariant to the presence of a linear trend. This is a nice property that
is not enjoyed by the original cosine transforms. For this reason, the shifted cosine transforms
are preferred over the original cosine transforms.

4.3 Augment or not: asymptotic e¢ ciency comparison

Suppose that we use the shifted cosine transforms. Regardless of whether there is a linear time
trend, we have two di¤erent estimators of �0, both of which are asymptotically mixed normal.
The �rst one is the TAOLS estimator and the second one is the TOLS estimator. The di¤erence
is whether the underlying regression is augmented or not. In this subsection, we address the
relative e¢ ciency of the two estimators.

For the model without a time trend, it follows from (25) and Theorem 7 that the asymptotic
variances of �̂TAOLS and �̂TOLS conditioning on (�; �) are

VTAOLS = �20�x

�1=2
xx (�0M��)

�1
�1=2xx ; (63)

VTOLS = �20

�1=2
xx (�0�)�1
�1=2xx ; (64)

where we call that � = (�1; :::; �K)
0 ; � = (�1; :::; �K)

0 ; �i =
R
�ci (r)Wx(r)dr and �i =

R
�ci (r) dWx(r):

For the model with a linear time trend, we know that a = 0 in Theorem 5. So no trans-
formed time trend can be included in the transformed and augmented regression. In this
case, we can follow the same proof of Theorem 5 and show that the asymptotic variance of
�̂TAOLS is �

2
0�x


�1=2
xx (�0M��)

�1

�1=2
xx : On the other hand, the asymptotic variance of �̂TOLS is

�20

�1=2
xx (�0�)�1


�1=2
xx as indicated by Theorem 8. That is, the asymptotic variance formulae in

(63) and (64) hold regardless of whether a linear trend is included in the model or not.
For any conforming vector c 2 Rd; we have

c0(V �1TAOLS � V
�1
TOLS)c

=
c0


1=2
xx

�0�x
(�0M�� �

�20�x
�20

�0�)


1=2
xx c

�0�x

=
c0


1=2
xx

�0�x

�
�0 (IK � P�) � �

�
�20 � �0x
�1xx�x0

�20

�
�0�

�


1=2
xx c

�0�x

=
c0


1=2
xx �0

�0�x

�
IK �

�
�0x


�1
xx�x0
�20

�
� P�

�
�


1=2
xx c

�0�x

= ~c0
�
IK � %2 � P�

�
~c (65)

where ~c = �

1=2
xx c=�0�x, P� = �(�0�)�1�0; and

%2 =
�0x


�1
xx�x0
�20

= argmax
`

�
`0�x0p
`0
xx`�0

�2
2 [0; 1]: (66)

By de�nition, %2 is the squared long run canonical correlation coe¢ cient between u0t and uxt:
If %2 = 0, then c0(V �1TAOLS � V �1TOLS)c = �~c0P�~c � 0 almost surely: In this case, the asymptotic
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variance of �̂TAOLS is always larger than the asymptotic variance of �̂TOLS : Intuitively, when
the long run canonical correlation between u0t and uxt is zero, including the additional regressor
W�x will not help reduce the size of the error term in the transformed regression. However, the
presence of W�x reduces the strength of the signal in Wx even though they are asymptotically
independent. That is why �̂TAOLS is asymptotically less e¢ cient. On the other hand, when
%2 = 1; which holds if the long run variation of u0t can be perfectly predicted by uxt; we have
c0(V �1TAOLS � V �1TOLS)c = ~c0 (IK � P�) ~c � 0 almost surely. In this case, the bene�t of including
the additional regressor W�x outweighs the cost, and it is worthwhile to include W�x to get the
asymptotically more e¢ cient estimator �̂TAOLS :

There are many scenarios between these two extreme cases. Whether the asymptotic distri-
bution of �̂TAOLS has a larger variance than that of �̂TOLS depends on the value of %

2:

Proposition 9 If %2 � d=K, then �̂TAOLS has a smaller asymptotic variance than �̂TOLS ; i.e.,
asymvar(�̂TAOLS)� asymvar(�̂TAOLS) is negative semide�nite. Otherwise, �̂TAOLS has a larger
asymptotic variance than �̂TOLS :

4.4 AMSE Rule

For the cosine basis function f
p
2 cos 2i�rgKi=1 we can follow Phillips (2005) and Sun (2011) and

show that the AMSE-optimal K� is given by

Kc�
MSE =

&�
1

16

tr(Im2 +Kmm)(

 
)
4vec (B)0 vec (B)

�1=5
T 4=5

'

'
�
1

16

�1=5
K�
MSE = K�

MSE(0:57) (67)

whereK�
MSE is the AMSE-optimalK given in (46) for the basis functions given in (43). Following

the same argument for (47), we recommend making an adjustment in �nite samples and set K
equal to max (Kc�

MSE ; d+ 5) :
Given the smaller choice ofK, the use of cosine basis functions rather than the complete cosine

and sine basis functions may lead to a less e¢ cient estimator of �0. However, the cosine basis
functions enjoy two advantages that the complete basis functions do not. First, it automatically
�lters out the time trend regressor so that we do not have to worry about the estimation error in
trend extraction. Second, the use of cosine basis function renders it unnecessary in some scenarios
to include the �rst di¤erence regressor in the regression and thus saves some degrees of freedom.
These two advantages may o¤set the e¢ ciency loss from having to select a smaller K:

5 Simulation

We compare the �nite-sample performance of our method with several existing methods in the
literature. For cointegration models without a time trend, we follow Phillips (2014) and consider:

yt = �0 + x
0
t�0 + u0t

xt = xt�1 + uxt
; ut =

�
u0t
uxt

�
= �ut�1 + �t (68)

where x0 = 0;

�t =

�
�0t
�xt

�
� i.i.d N (0;�) ; � = � � Id+1, � = Jd+1;d+1 � '+ Id+1 � (1� ');
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and Jp;q is the p � q matrix of ones. The dimension d of xt is set to 2, and the true regression
coe¢ cients are set to be �0 = 3 and �0 = (1; 1)0: The parameter � controls the persistence of
individual components of ut = (u0t; u

0
xt)

0 2 Rd+1. The parameter ' characterizes the degree of
endogeneity, as it is equal to the pairwise correlation coe¢ cient between the elements of ut in the
above model. We set the values of � and ' as follows:

� 2 f0:05; 0:20; 0:35; 0:50; 0:75; 0:90g and ' 2 f0; 0:75g :

We also consider a cointegration model that includes a linear time trend:

yt = �0 + �0t+ x
0
t�0 + u0t

xt = xt�1 + uxt;

where �0 is set to 0:05 without loss of generality. Other con�gurations are exactly the same as
the model without a linear trend.

We are interested in testing H0 : �0 = (1; 1)
0 vs. H1 : �0 6= (1; 1)0:We consider the Wald-type

tests based on four di¤erent estimators: the FMOLS estimator of Phillips and Hansen (1990),
the TIV estimator of Phillips (2014), the IMOLS estimator of Vogelsang and Wagner (2014),
and the TAOLS estimator proposed in this paper. The �rst two tests are chi-squared tests that
employ the increasing-smoothing asymptotic approximation and use chi-squared critical values.
The last two tests are �xed-smoothing tests. The IMOLS test employs the �xed-b asymptotic
critical values, which are available from the supplementary appendix to Vogelsang and Wagner
(2014). The TAOLS test employs the �xed-K asymptotic approximation and scaled standard F
critical values.

For the FMOLS and IMOLS methods, we consider the Bartlett, Parzen, and Quadratic
Spectral (QS) kernels. For the TIV method, we choose the basis functions f

p
2 sin ((j � 1=2)�r)g;

as suggested by Phillips (2014). Note that for the TIV method, a constant vector should be
included in the instrument matrix � de�ned in (22). When the model includes a linear time
trend, the linear trend should also be included in �: For the TAOLS, we consider the Fourier
basis functions and cosine functions given in (43) and (44), respectively. Simulation results for
models with a linear trend and for shifted cosine basis functions are reported in the original
working paper Hwang and Sun (2016).

For �xed values of K; we set K = 8 and 16: The comparable values of b for the kernel methods
that deliver the same asymptotic variance are

b = (caK)
�1 for ca = 2=3; 0:539285; and 1;

for the Bartlett, Parzen, and QS kernels, respectively. In particular, for the QS kernel, which we
will focus on, the corresponding b values are b = 0:13 and 0:06:

For data-driven values of K, we employ the formula in either (47) or (48), depending on
whether a linear trend is included in the model. For the data-driven values of b; we employ the
formulae in Andrews (1991), which are obtained by minimizing the asymptotic (truncated) mean
squared error of the kernel LRV estimator. The asymptotic mean squared error criterion is not
necessarily the most suitable one for the IMOLS based inference. Ideally, we should derive a
formula for b that optimally balances the size distortion under the null and size-corrected power
under the alternative. Like the AMSE-based rule given in (47) or (48), the AMSE-based rule of
choice for b should be regarded as only a rule of thumb. See Vogelsang and Wagner (2014) for
more discussion on the subtlety of choosing b: When data-driven values are used for both K and
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b; the unknown parameters B and 
 in the data-driven formulae are estimated by the plug-in
method using VAR(1) as the approximating model for fût =

�
ûOLS0t ;�x0t

�0g; where ûOLS0t is the
OLS residual based on the OLS estimators of slope coe¢ cients.

We report the simulation evidence only for the model without a linear trend, as the qualitative
observations that follow remain valid for the model with a linear trend. Figures 1�3 report the
empirical size of �ve di¤erent tests; the labels on the �gures should be self-explanatory. The
number of simulation replications is 10,000, and the nominal size of all tests is 5%. To avoid
overloading the �gures, we report only the case with the QS kernel for the kernel-based methods.
While Figures 1 and 2 report the case with �xed smoothing parameters, Figure 3 reports the
case with data-driven smoothing parameters. Several patterns emerge from these �gures.

First, it is clear that, for all values for � and ' and sample sizes T 2 f100; 200g; our proposed
F tests, i.e., �TA-Fourier-F� and �TA-Cosine-F,� which are based on the TAOLS estimator,
outperform the chi-squared tests, i.e., �FM-QS-Chi2�and �TIV-Sine-Chi2�, by a large margin.
Simulation results not reported here show that using F critical values can also dramatically reduce
the size distortion of the �TIV-Sine-Chi2� test. Our �ndings are consistent with the literature
on heteroskedasticity-autocorrelation robust inference such as Sun (2013, 2014a), Sun, Phillips,
and Jin (2008), and Kiefer and Vogelsang (2005), which provide theoretical justi�cations and
simulation evidence on the accuracy of the �xed-smoothing approximations.

Second, among the two groups of �xed-smoothing tests, our proposed F tests, �TA-Fourier-
F� and �TA-Cosine-F,� outperform the nonstandard �xed-b test �IM-QS-b.� This is true for
both the �xed smoothing parameters and data-driven smoothing parameters. In the cases with
�xed smoothing parameters, the �xed-smoothing tests are fairly accurate when � is small but
become somewhat sized distorted when � is very large. The exception is that, when b = 0:13; the
�IM-QS-b�test under-rejects when � is small, suggesting that the �xed-b critical value appears
to be too large when � is small.

Third, the data-driven choices of smoothing parameters help improve the size accuracy of the
�xed-smoothing tests. In particular, our proposed F tests are very accurate when K is data-
driven. While it is convenient to set the smoothing parameter to a given value, it pays to use
a data-driven rule, even though the rule is designed for a di¤erent problem. The data-driven
rule is more compatible with the increasing-smoothing asymptotics, but the �xed-smoothing
critical values are adaptive in that they approach the increasing-smoothing critical value when
the amount of smoothing is large. In other words, coupling a data-driven smoothing parameter
with �xed-smoothing critical values can be theoretically justi�ed using the increasing-smoothing
asymptotics under which K !1 as T !1:

Fourth, it is not surprising that endogeneity of a higher degree poses more challenges for size
accuracy. It is also well expected that when the smoothing parameters are data-driven, a larger
sample size helps reduce the size distortion.

Finally, for our proposed F tests, the �nite-sample performances are virtually the same across
the two sets of trigonometric basis functions we consider. So, in terms of size accuracy, it makes
almost no di¤erence which set of trigonometric basis functions is used.

Next, we investigate the �nite-sample power of each procedure. The power is size-adjusted
so that the comparison is meaningful. The DGP�s are the same except that the parameters of
interest are from the local alternative hypothesis � = �0 + �=T where �= k�k is uniform on a
sphere. The choice rules for K and b are also the same as before. Each power curve is drawn
against k�k, which measures the magnitude of the local departure. Figures 4�8 present the
size-adjusted power curve of each procedure for � = 0:05; 0:35; 0:50; 0:75; 0:90, ' = 0; 0:75; and
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T = 100; 200 when the smoothing parameters are data-driven. We omit the TIV test from the
�gures, as its power curve is close to that of the TA-Fourier test. The closeness of the power
curves is not surprising, because the TIV test and the TA-Fourier test are based on essentially the
same test statistic. The only di¤erence lies in the critical values used. So upon size adjustment
the two tests are essentially the same test.

The simulation results are brie�y summarized as follows.
First, the FM-QS test yields the highest power in almost all cases. This is not surprising,

as the FMOLS estimator e¤ectively uses both low-frequency and high-frequency components
to estimate the cointegrating vector with modi�cation in only the second stage. However, the
FMOLS estimator can be fragile if there are high-frequency contaminations. In addition, the FM-
QS test has very large size distortion. As an example, for ' = 0:75 and T = 200; the empirical
size of the FM-QS test is 25% when � = 0:75. It increases to 45% when � = 0:90: These numbers
can be read from Figure 3 and are also available from tables not reported here.

Second, the power of the �TA-Fourier� test is either close to or higher than the power of
the IM-QS test. When the serial dependence is weak, e.g. � = 0:05; the �TA-Fourier� test
is as powerful as the most powerful FM-QS test. Given its accurate size, superior power, and
convenience to use, we recommend the �TA-Fourier-F�test for practical use.

Third, among our proposed F tests, the power curve based on the Fourier bases is close to
that based on the cosine bases. While the Fourier bases perform slightly better than the cosine
bases when � is relatively small, their power curves are virtually indistinguishable when � becomes
large. In view of the similar size and power properties, we can conclude that it does not matter
much whether Fourier bases or cosine bases are used.

To sum up, when the smoothing parameter K is data-driven, the TAOLS based F tests have
fairly accurate size. They are much more accurate than the FM-QS and TIV tests that use the
chi-squared approximation. They are also more accurate than the IM-QS test, which also uses
a �xed-smoothing approximation. While the TAOLS based F tests are not as powerful as the
FM-QS test for some simulation con�gurations, they have competitive and often superior power
relative to the IM-QS test.

6 Conclusion

This paper provides a simple, robust, and more accurate approach to parameter estimation and
inference in a triangular cointegrated system. Cointegration is fundamentally a long run relation-
ship. Our approach echoes this key observation by focusing only on data transformations that
capture the long run variation and covariation of the underlying time series. From a practical
point of view, our approach enjoys two major advantages. First, the more accurate approxima-
tions we derived under the so-called �xed-K asymptotics are the standard F and t distributions.
Second, test statistics can be obtained from the usual regression output. So, our asymptotic F
and t tests are just as easy to implement as the F and t tests in a classical linear normal regres-
sion. A simulation study shows that our tests are much more accurate than the chi-squared tests.
For practical use, we recommend using the Fourier basis functions and employing the modi�ed
data-driven rule to select the number of basis functions.

A key open question is how to select the number of basis functions optimally. While we have
suggested a data-driven approach, it does not directly target the problem under consideration.
It would be interesting to investigate selection of the number of basis functions to minimize the
approximate mean squared error of the point estimator of the cointegrating vector. If we are
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interested in interval estimation or hypothesis testing, then the number of basis functions should
be oriented toward optimizing the underlying objects such as the coverage probability error, the
interval length, and the type I and type II errors. There may also be room to select optimal basis
functions. We hope to address some of these questions in future research.

7 Appendix of Proofs

Proof of Theorem 1. By the de�nition of 
̂TAOLS and �T ; we have
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Similarly, we have
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Using this result, we have
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So the representations in (25) and (26) hold.

Proof of of Proposition 2. Part (i): By Lemma A in Section 6 of Phillips (2005b), we have
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Combining these two representations and using Theorem 1, we have
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where G(�) is the cdf of the standard normal distribution. Note that
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de�nite with probability one. By the de�nition of weak convergence and the continuous mapping
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for any f 2 L20[0; 1] \ C[0; 1] as K ! 1 where k�kL2 is the L2 norm and C[0; 1] is the space of
continuous functions on [0; 1]: But

�0� =
KX
i=1

�i�
0
i =

KX
i=1

�Z 1

0
�i(r)Wx(r)dr

��Z 1

0
�i(s)Wx(s)ds

�0

=

Z 1

0

Z 1

0

 
KX
i=1

�i(r)�i(s)

!
~Wx(r) ~W

0
x(s)drds

where ~Wx(s) 2 L20[0; 1] \ C[0; 1] almost surely, and so

�0� !
Z 1

0

~Wx(r) ~W
0
x(r)dr (79)

almost surely. This implies that �0� )
R 1
0
~Wx(r) ~Wx(r)

0dr:
Next, we prove �0P�� = op(1). We have

�0P�� = �0�
�
�0�
��1

�0� =
1

K
� �0�

�
�0�

K

��1
�0�

=
1

K
�
 

KX
i=1

�i�
0
i

! 
1

K

KX
i=1

�i�
0
i

!�1 KX
i=1

�i�
0
i

!

=
1

K
�
 

KX
i=1

�i�
0
i

! 
KX
i=1

�i�
0
i

!
+ op(1) (80)

30



where the last equality follows from the result that �i
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where Kd;d is the d2 � d2 commutation matrix. Now
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As a result, we have
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as K !1: In view of the mean and variance orders, we have
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Combining (79) and (84) yields
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Proof of of Theorem 3. We prove only the result for the Wald statistic as the proof goes
through for the t statistic with obvious modi�cations. Using (74), we have
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where ~R = R

1=2
xx ;

Q0
�
~R
�
�0M��

��1 ~R0��1Q d
= �2p and �

0M��
d
= �2K�2d:

Note that conditional on � = (�; �) ; M�� =
h
IK � �

�
� 0�
��1

� 0
i
� and �0M�� are independent,

as both M�� and �0M�� are normal and the conditional covariance is

cov
�
M��; �

0M��
�
=
h
IK � �

�
� 0�
��1

� 0
i
M�� = 0:

So conditional on �; the numerator and the denominator in (86) are independent chi-square
variates. This implies that
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�
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conditional on �: But the conditional distribution does not depend on the conditioning variable
�; so it is also the unconditional distribution. We have therefore proved that

F (�̂TAOLS))
K

K � 2dFp;K�2d: (87)

Proof of Theorem 4. The proof is similar to that for Theorem 3. We prove the result for the
F statistic only. We still have
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But now
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where

Z =
h
~R
�
�0M��

��1 ~R0i�1=2 ~R ��0M��
��1

�0M�� s N(0; Ip)
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and Z is independent of � 0M�� conditional on � = (�; �) : Using the same conditioning argument
as in the proof of Theorem 3, we have
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1CA
conditionally on � = (�; �) : Unconditionally, the limiting distribution is a mixed noncentral F

distribution with a random noncentrality parameter �0
h
~R (�0M��)

�1 ~R0
i�1

�=�20�x, which is equal

to k�k2 :

Proof of Theorem 5. We follow the same step as in the proof of Theorem 1. We consider
only Ftr(�̂TAOLS): The proof for ttr(�̂TAOLS) is similar.

Let
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Some simple calculations show that
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So part (i) of the theorem holds. In particular,
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Following the same steps in the proof of Theorem 3, we have (�̂tr0�x)
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bining this with (90), we have
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Proof of Lemma 6. The cosine functions clearly satisfy Assumption 1. Note that
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Therefore
R 1
0 	

c
i (r)�

c
j (r) dr = 0 for any given i; j = 1; :::;K: That is, the cosine functions also

satisfy Assumption 3.

Proof of Theorem 7. We have
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0 � N(0; �20IK) and � ?  , we can represent the limiting distribution as

zero mean mixed normal distribution
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where the (i; j)th element of P� = �(�0�)�1�0 is
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�j :
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So, we have E[pii] = E[pjj ], i.e., all the diagonal elements of E[P�] are same. In other words,
E[p11] = E[p22] = ::: = E[pKK ] = � for some �: This gives us

�K = tr[EP�] = E[tr
�
�(�0�)�1�0

�
= d

and so � = E[pii] = d=K for i = 1; :::;K: For the o¤-diagonal elements, we note that the
distribution of pi;j is symmetric around zero, which implies that E[pij ] = E[pji] = 0 for all i 6= j:
Therefore,
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and this immediately leads to the desired result.
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Figure 1: Empirical size of 5% �xed-smoothing tests (TA-Fourier-F, TA-Cosine-F, IM-QS-b) and
chi-squared tests (TIV-Sine-Chi2, FM-QS-Chi2) with K = 8 and comparable b (b = 0:13)
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Figure 2: Empirical size of 5% �xed-smoothing tests (TA-Fourier-F, TA-Cosine-F, IM-QS-b) and
chi-squared tests (TIV-Sine-Chi2, FM-QS-Chi2) with K = 16 and comparable b (b = 0:06)

42



0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Em
pi

ric
al

 S
iz

e

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Em
pi

ric
al

 S
iz

e

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Em
pi

ric
al

 S
iz

e

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Em
pi

ric
al

 S
iz

e

Figure 3: Empirical size of 5% �xed-smoothing tests (TA-Fourier-F, TA-Cosine-F, IM-QS-b) and
chi-squared tests (TIV-Sine-Chi2, FM-QS-Chi2) with data-driven smoothing parameters
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Figure 4: Size-adjusted power of di¤erent tests with data-driven smoothing parameters when
� = 0:05
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Figure 5: Size-adjusted power of di¤erent tests with data-driven smoothing parameters when
� = 0:35
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Figure 6: Size-adjusted power of di¤erent tests with data-driven smoothing parameters when
� = 0:50
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Figure 7: Size-adjusted power of di¤erent tests with data-driven smoothing parameters when
� = 0:75
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Figure 8: Size-adjusted power of di¤erent tests with data-driven smoothing parameters when
� = 0:90
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