Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Myocardial injection of a thermoresponsive hydrogel with reactive oxygen species scavenger properties improves border zone contractility

Abstract

The decrease in contractility in myocardium adjacent (border zone; BZ) to a myocardial infarction (MI) is correlated with an increase in reactive oxygen species (ROS). We hypothesized that injection of a thermoresponsive hydrogel, with ROS scavenging properties, into the MI would decrease ROS and improve BZ function. Fourteen sheep underwent antero-apical MI. Seven sheep had a comb-like copolymer synthesized from N-isopropyl acrylamide (NIPAAm) and 1500 MW methoxy poly(ethylene glycol) methacrylate, (NIPAAm-PEG1500), injected (20 × 0.5 mL) into the MI zone 40 min after MI (MI + NIPAAm-PEG1500) and seven sheep were MI controls. Cardiac MRI was performed 2 weeks before and 6 weeks after MI + NIPAAm-PEG1500. BZ wall thickness at end systole was significantly higher for MI + NIPAAm-PEG1500 (12.32 ± 0.51 mm/m2 MI + NIPAAm-PEG1500 vs. 9.88 ± 0.30 MI; p = .023). Demembranated muscle force development for BZ myocardium 6 weeks after MI was significantly higher for MI + NIPAAm-PEG1500 (67.67 ± 2.61 mN/m2 MI + NIPAAm-PEG1500 vs. 40.53 ± 1.04 MI; p < .0001) but not significantly different from remote myocardium or BZ or non-operated controls. Levels of ROS in BZ tissue were significantly lower in the MI + NIPAAm-PEG1500 treatment group (hydroxyl p = .0031; superoxide p = .0182). We conclude that infarct injection of the NIPAAm-PEG1500 hydrogel with ROS scavenging properties decreased ROS and improved contractile protein function in the border zone 6 weeks after MI.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View