Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

THE Epsilon*/Lambda BRANCHING RATIO OF Y*1

Permalink
https://escholarship.org/uc/item/85h101f7

Authors

Alston, Margaret H. Alvarez, Luis W.
Eberhard, Philippe
et al.
Publication Date
2008-05-21

UNIVERSITY OF CALIFORNIA

Ernest O. Saurence Radiation Laboratory

IWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

UNIVERSITY OF CALIFOFNLA
 Lawrence Radiation Laboratory
 Berkeley, California

Contract No. W-7405-eng-48

THE Σ / Λ BRANCHING RATIO OF Y_{1}^{*}
Margaret H. Alston, Luis W. Alvarez, Philippe Eberhard, Myron L. Good William Graziano, Harold K. Ticho, and Stanley G. Wojcicki

April 25, 1961

THE Σ / Λ BRANCHING RATIO OF $Y_{1}^{*}+$

Margaret H. Alston, Luis W. Alvarez, Philippe Eberhard, Myron L. Good,** William Graziano, Hawold K. Ticho, ${ }^{\dagger+}$ and Stanley G. Wojcicki

Lawrence Radiation Laboratory and Department of Physics Univeraity of California, Berkeley, California

April 25. 1961

Recently a $T=1$ resonance in the $\Lambda \pi$ aystem called X_{1}^{*} has been observed with a mass of $1385 \mathrm{Mev} .^{1-6}$ Two types of resonances have been predicted that might relate thi observation to other elementary-particle interactions:(1) $P 3 / 2$ resonances in the $\Lambda \pi$ and $\mathcal{E n}$ systems predicted by global symmotry ${ }^{7,8}$ corresponding to the ($3 / 2,3 / 2$) resonance of the πN ystem, (2) a spin-1/2 Y- π resonance resulting from a bound state in the RNsystem. ${ }^{9,10}$ The position and width of the observed Y_{1}^{*} resonance agree with both theories but since the spin and parity have not yet been determined, it is impossible at present to distinguish between the two theoretical interpretations.

Global symmetry ${ }^{11}$ predicts a theoretical branching ratio $\left(\mathrm{Y}_{1}^{*+} \rightarrow \Sigma^{0}+\pi^{+}\right) /\left(\mathrm{Y}_{1}^{*+} \rightarrow \Lambda+\nabla^{+}\right)=1 / 4$ for the $\mathrm{T}=1$ resonance. The phase-space factor $\left(P_{\Sigma} / P_{\Lambda}\right)^{3}=(126 / 207)^{3}=0.225$ reduces the expected branching ratiofor this process to $R=(1 / 4) \times 0.225 \sim 5 \%$. Furthermore, as a consequence of charge independence the rates $\mathrm{Y}_{1}^{*+} \rightarrow \Sigma^{ \pm}+\mathrm{m}^{0}, \mathrm{Y}_{1}^{* \pm} \rightarrow \Sigma^{0}+\pi^{\boldsymbol{*}}$. and $Y_{1}^{* 0} \rightarrow \Sigma^{ \pm}+\pi^{F}$ are equal. In addition to the $T=1$ resonance, a $T=2 \Sigma-\pi$ resonance with a total energy of 1540 Mev and a half width, $\mathrm{r} / 2$, of 60 Mev is predicted by global symmetry. ${ }^{8}$

[^0]The $\bar{K}-N$ bound-state model suggests values of R considerably larger than 5%. However, when non-zero offective fangoe atcotakdn into account ${ }^{12}$ R can become quite small, especially if the (2 A) parity should be odd.

To investigate these possibilities, we have continued our study of $\mathbb{K}^{-}-\mathrm{p}$ interactions at $1.15 \mathrm{Bev} / \mathrm{c}$ in the Lawrence Radiation Laboratory 15 -in. hydrogen bubble chamber by atudying events in which $a \Sigma$ is observed. The total cross sections for these interactions are shown in Table I; only statistical errors are indicated. The separation of $\Sigma^{ \pm}+\pi^{\overline{+}}+\pi^{0}$ and $\Sigma^{ \pm}+\pi^{\bar{q}}+2 \pi^{0}$ events was difficult because many of the latter events can also be fitted to the first hypothesig. The numbers given in Table 1 and in the Dalitz and mass plots below were corrected to account for this ambiguity. The correction factor was estimated by using our $\Sigma^{ \pm}+\pi^{\mp}+\pi^{+}+\pi^{-}$events.

Dalitz plots for the thresbody reactions are shown in Fig. 1. The Y_{1}^{*} resonance of mass 1385 Mev should appear as a bunching of events about both horizontal and vertical lines correaponding to $T \pi=282 \mathrm{Mev}$. To obtain an upper limit for the branching ratio R, we combined the events into different charge atates of the $\Sigma \pi$ system. All charged Σ were observed; however, in the Σ^{0} cases only two-thirds of the events were observable because of the neutral decays of the Λ^{0}. Furthermore, we had estimated that about onethird of the $\Sigma^{0} \pi^{+}+\pi^{-}$evente alsofitted a $\Lambda \pi^{+} \pi^{-}$interpretation and had been included in already published data. ${ }^{1}$ Consequently each $\Sigma^{0} \pi^{+} \pi^{-}$ovent was: given a weight of 2.25. The resultant mass spectra are shown in Fig. 2. In the cases of $(\Sigma \pi)^{+}$and $(\Sigma \pi)^{-}$there appears to be no excess of events in the region of $M_{1}=1385 \mathrm{Mev}$. Using the number of $\left(\Lambda^{+}{ }^{+}\right.$) and $\left(\Lambda \pi^{-}\right)$events with $1355 \mathrm{Mev}<\mathrm{M}_{\mathrm{A} \pi}<1415 \mathrm{Mev}$ from reference l, and assuming that all $\Sigma \pi$ events in the game regions of Fig. 2 are Y_{i}^{*}, we obtain $R_{m a x} \leqslant 8 \%$.

This treatment yields an unrealistic upper limit, since there ie no evidence of any peaking above background. The results are consistent with $R=0$. The $\Sigma^{ \pm}+\pi^{+}+2 \pi^{0}$ evente possibly misidentified as $\Sigma^{ \pm}+\nabla^{\mp}+\pi^{0}$ (or vice versa) do not fall into the mass band used in this analysis, since they yield apparently high masses of the $\Sigma^{*}{ }_{\square}{ }^{0}$ syatem.

We conclude that the Σ / Λ branching ratio R for the strong decay of the $T=1 Y_{1}^{*}$ is at most a few percent and is consistent with zero. This result agrees with the value of R obtained by Berge. ${ }^{3}$ As indicated above this value of R does not rule out either the global symmetry or the KN bound-state model of the Y_{1}^{*} resonance. No ovidence for the resonance with $T=2$ predicted by global symmetry at $M=1540 \mathrm{Mev}$ is observed; however, this wide resonance would be hard to separate from background.

The authors wish to thank the many members of the Bevatron and 15 -in. bubble chamber crew and the scanners who made this experiment possible. One of us, Philippe Eberhard, wishes to thank the Philippe Foundation, Inc. and the Commisariat L ' Energie Atomique for a fellowahip.

Table I. Cross sections for the Σ producing interactions at $1.15 \mathrm{Bev} / \mathrm{c}$

Cross sections
(mb)

$$
\begin{array}{llr}
\text { Reaction } & \begin{array}{c}
\text { No. of events } \\
\text { (uncorrected) }
\end{array} & \begin{array}{c}
\text { Cross sectiol } \\
\text { (mb) }
\end{array} \\
\hline \mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{-}+\pi^{+} & 87 & 1.40 \pm 0.16 \\
\rightarrow \Sigma^{+}+\pi^{-} & 84 & 1.34 \pm 0.18 \\
& \rightarrow \Sigma^{+}+\pi^{-}+\pi^{0} & 57 \\
& \rightarrow \Sigma^{-}+\pi^{+}+\pi^{0} & 54 \\
& \rightarrow \Sigma^{0}+\pi^{+}+\pi^{-} & 0.97 \pm 0.16 \\
& \rightarrow \Sigma^{+}+\pi^{-}+\pi^{0}+\pi^{0} & 0.83 \pm 0.20 \\
& \rightarrow \Sigma^{-}+\pi^{+}+\pi^{0}+\pi^{0} & 13
\end{array}
$$

FOOTNOTES

1. M. Alston, L. Alvarez, P. Eherhard, M. Good, W. Graziano, H. Ticho, and S. Wojcicki, Phys. Rav. Letters 5, 520 (1960).
2. O. Dahi, N. Horwitz, D. Miller, J. Murray, and P. White, Phys. Rev. Letters 6, 142 (1961).
3. J. P. Berge, P. Bagtien, O. Dahl, M. Ferro-Luzzi, J. Kirz, D. H. Miller, J. J. Murray, A. H. Rosenfeld, R.D. Tripp, and M. Watson, (submitted to Phys. Rev. Letters).
4. H. Martin, L. Leipuner, Wi. Chinowsky, E. Shively, and R. Adair, Phys. Rev. Letters 6. 283 (1961).
5. M. M. Block, E.B. Brucker, R. Gessaroli, T. Kikuchi, A. Kovacs, C.M. Meltzer, R. Kraemer, M. Nussbaum, A. Pevsner, P. Schlein, R. Strand, H. O. Cohn, E.M. Harth, J. Leitner, L. Lendinara, L. Monari, and G. Puppi. (submitted to Nuovo cimento).
6. R. Ely, S. Fung, G. Gidal, Y. Pan, W. Powell, and H. White, Bull. Am. Phys. Soc. 6, 291 (1961).
7. M. Gell-Mann, Phys. Rev. 106, 1297 (1957).
8. P. Amati, A. Stanghollini, and B. Vitali, Phys. Rev. Letters 5, 524 (1960), Nuovo cimento 13. 1143 (1959).
9. R. Dalitz and S.F. Tuan, Phys. Rev. Letters 2, 425 (1959).
10. R. Dalitz, Phys. Rev. Letters 6, 239 (1961).
11. Ph. Meyer, J. Prentki, and Y. Yamaguchi, Phys. Rev. Letters 5, 442 (1960).
12. J. L. Shaw, University of California at La Jolla (private communication).

FIGURE LEGENDS

Fig. 1. Dalitz plots for the reactions:
(a) $K^{-}+p=\mathbf{\Sigma}^{+}+{\mathbf{a}^{-}}^{+}+\boldsymbol{n}^{0}$ (57 vents)
(b) $\mathrm{K}^{*}+\mathrm{p} \rightarrow \mathrm{\Sigma}^{-}+\boldsymbol{\pi}^{+}+\mathbf{D}^{0}$ (54 evente)
(c) $\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{0}+\pi^{+}+\pi^{-}$ (27 events).

Fig. 2. Mase plots of the charged and neutral $\mathbb{\Sigma}-\boldsymbol{\pi}$ eytems, including curves vepreaenting phase-space distributions.
(a) Mass of $\left(\Sigma_{\bar{w}}\right)^{-}$, from the reactions: $\mathrm{K}^{-}+\mathrm{p} \rightarrow \mathrm{x}^{0}+\mathbf{E}^{-}+{ }^{+}$

$$
\rightarrow \Sigma^{-}+\pi^{0}+\pi^{+}
$$

$$
\rightarrow \Sigma^{+}+\pi^{0}+\pi^{-}
$$

(c) Masa of $(\Sigma \pi)^{0}$, from the reactions: $\mathrm{K}^{-}+\mathrm{p} \rightarrow \mathrm{\Sigma}^{+}+\pi^{-}+\mathrm{p}^{0}$

$$
\rightarrow \Sigma^{-}+\pi^{+}+\pi^{0}
$$

$T_{\pi^{+}}(\mathrm{Mev})$

Adjusted number of events

Adjusted number of events

[^0]: ${ }^{F}$ Work done under the auspices of the U.S. Aromic Energy Commiseion.
 ${ }^{\$}$ Presently at Laboratoire de Physique Atomique, College de France. Paris, France. **Presently at University of Wisconsin, Madison, Wisconsin.
 ${ }^{+t} p_{r e s e n t l y}$ at the University of Callfornia at Los Angeles. Los Angeles, California

