Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

THE Epsilon*/Lambda BRANCHING RATIO OF Y*1

Permalink

https://escholarship.org/uc/item/85h101f7

Authors

Alston, Margaret H. Alvarez, Luis W. Eberhard, Philippe <u>et al.</u>

Publication Date 2008-05-21

UCRL - 26 23

UNIVERSITY OF California

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

UCRL-9675 Limited distribution

ġ.

ŧ

UNIVERSITY OF CALIFOFNIA

Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

THE Σ^{*} branching ratio of Y_1^{*}

Margaret H. Alston, Luis W. Alvarez, Philippe Eberhard, Myron L. Good William Graziano, Harold K. Ticho, and Stanley G. Wojcicki

April 25, 1961

THE Σ/Λ branching ratio of y_1^* *

Margaret H. Alston, Luis W. Alvarez, Philippe Eberhard, Myron L. Good, ** William Graziano, Hagold K. Ticho, ** and Stanley G. Wojcicki

> Lawrence Radiation Laboratory and Department of Physics University of California, Berkeley, California

> > April 25, 1961

Recently a T = 1 resonance in the $\Lambda \pi$ system called Y_1^* has been observed with a mass of 1385 Mev.¹⁻⁶ Two types of resonances have been predicted that might relate this observation to other elementary-particle interactions: (1) P 3/2 resonances in the $\Lambda \pi$ and $\Sigma \pi$ systems predicted by global symmetry^{7,8} corresponding to the (3/2, 3/2) resonance of the πN system, (2) a spin-1/2 Y- π resonance resulting from a bound state in the KN system.^{9,10} The position and width of the observed Y_1^* resonance agree with both theories, but since the spin and parity have not yet been determined, it is impossible at present to distinguish between the two theoretical interpretations.

Global symmetry¹¹ predicts a theoretical branching ratio $(Y_1^{*+} \rightarrow \Sigma^0 + \pi^+)/(Y_1^{*+} \rightarrow \Lambda + \pi^+) = 1/4$ for the T = 1 resonance. The phase-space factor $(P_{\Sigma}/P_{\Lambda})^3 = (126/207)^3 = 0.225$ reduces the expected branching ratio for this process to $R = (1/4) \times 0.225 \sim 5\%$. Furthermore, as a consequence of charge independence the rates $Y_1^{\pm+} \rightarrow \Sigma^{\pm} + \pi^0$, $Y_1^{\pm+} \rightarrow \Sigma^0 + \pi^{\pm}$, and $Y_1^{*0} \rightarrow \Sigma^{\pm} + \pi^{\mp}$ are equal. In addition to the T = 1 resonance, a $T = 2 \Sigma - \pi$ resonance with a total energy of 1540 Mev and a half width, $\Gamma/2$, of 60 Mev is predicted by global symmetry.⁸

Work done under the auspices of the U.S. Atomic Energy Commission.

[§]Presently at Laboratoire de Physique Atomique, College de France, Paris, France. **Presently at University of Wisconsin, Madison, Wisconsin.

** Presently at the University of California at Los Angeles, Los Angeles, California The \overline{K} -N bound-state model suggests values of R considerably larger than 5%. However, when non-zero effective fanges arotaken into account¹². R can become quite small, especially if the ($\Sigma \Lambda$) parity should be odd.

To investigate these possibilities, we have continued our study of $K^- - p$ interactions at 1.15 Bev/c in the Lawrence Radiation Laboratory 15-in. hydrogen bubble chamber by studying events in which a Σ is observed. The total cross sections for these interactions are shown in Table I; only statistical errors are indicated. The separation of $\Sigma^{\pm} + \pi^{\mp} + \pi^{0}$ and $\Sigma^{\pm} + \pi^{\mp} + 2\pi^{0}$ events was difficult because many of the latter events can also be fitted to the first hypothesis. The numbers given in Table I and in the Dalitz and mass plots below were corrected to account for this ambiguity. The correction factor was estimated by using our $\Sigma^{\pm} + \pi^{\mp} + \pi^{+} + \pi^{-}$ events.

Dalitz plots for the three body reactions are shown in Fig. 1. The Y_1^* resonance of mass 1385 Mev should appear as a bunching of events about both horizontal and vertical lines corresponding to $T_{\pi} = 282$ Mev. To obtain an upper limit for the branching ratio R, we combined the events into different charge states of the $\Sigma\pi$ system. All charged Σ were observed; however, in the Σ^0 cases only two-thirds of the events were observable because of the neutral decays of the Λ^0 . Furthermore, we had estimated that about one third of the $\Sigma^0 \pi^+ \pi^-$ events also fitted a $\Lambda \pi^+ \pi^-$ interpretation and had been included in already published data. ¹ Consequently each $\Sigma^0 \pi^+ \pi^-$ event was given a weight of 2.25. The resultant mass spectra are shown in Fig. 2. In the cases of $(\Sigma\pi)^+$ and $(\Sigma\pi)^-$ there appears to be no excess of events in the region of M = 1385 Mev. Using the number of $(\Lambda \pi^+)$ and $(\Lambda \pi^-)$ events with 1355 Mev < $M_{\Lambda\pi}$ < 1415 Mev from reference 1, and assuming that all $\Sigma\pi$ events in the same regions of Fig. 2 are Y_1^* , we obtain $R_{max} \leq 8\%$.

This treatment yields an unrealistic upper limit, since there is no evidence of any peaking above background. The results are consistent with R = 0. The $\Sigma^{\pm} + \pi^{\pm} + 2\pi^{0}$ events possibly misidentified as $\Sigma^{\pm} + \pi^{\mp} + \pi^{0}$ (or vice versa) do not fall into the mass band used in this analysis, since they yield apparently high masses of the $\Sigma^{\pm} \pi^{0}$ system.

We conclude that the Σ/Λ branching ratio R for the strong decay of the T = 1 Y_1^* is at most a few percent and is consistent with zero. This result agrees with the value of R obtained by Berge.³ As indicated above this value of R does not rule out either the global symmetry or the $\overline{K}N$ bound-state model of the Y_1^* resonance. No evidence for the resonance with T = 2 predicted by global symmetry at M = 1540 Mev is observed; however, this wide resonance would be hard to separate from background.

The authors wish to thank the many members of the Bevatron and 15-in. bubble chamber crews and the scanners who made this experiment possible. One of us, Philippe Eberhard, wishes to thank the Philippe Foundation, Inc. and the Commisariat & L'Energie Atomique for a fellowship.

-4-

Reaction	No. of events (uncorrected)	Cross sections (mb)
<"+p → Σ ⁻ + π ⁺	87	1.40 ± 0.16
$\rightarrow \Sigma^+ + \pi^-$	84	1.34 ± 0.18
$\rightarrow \Sigma^+ + \pi^- + \pi^0$	57	0.97 ± 0.16
$\rightarrow \Sigma^{-} + \pi^{+} + \pi^{0}$	54	0.83 ± 0.20
$\rightarrow \Sigma^0 + \pi^+ + \pi^-$	27	0.97±0.20
$- \Sigma^{+} + \pi^{-} + \pi^{0} + \pi^{0}$	13	0.18 ± 0.06
$\rightarrow \Sigma^- + \pi^+ + \pi^0 + \pi^0$	9	0.12 ± 0.05
· -+ Σ ⁺ + π ⁺ + π ⁻ + π ⁻	19	0.19 ± 0.06
→ ∑ [*] + [*] + [*] + ⁺	13	0.12 ± 0.05

Table I. Cross sections for the Σ producing interactions at 1.15 Bev/c

FOOTNOTES

- 1. M. Alston, L. Alvarez, P. Eberhard, M. Good, W. Graziano, H. Ticho, and S. Wojcicki, Phys. Rev. Letters 5, 520 (1960).
- 2. O. Dahl, N. Horwitz, D. Miller, J. Murray, and P. White, Phys. Rev. Letters 6, 142 (1961).
- J. P. Berge, P. Bastien, O. Dahl, M. Ferro-Luzzi, J. Kirz, D. H. Miller, J. J. Murray, A. H. Rosenfeld, R. D. Tripp, and M. Watson, (submitted to Phys. Rev. Letters).
- 4. H. Martin, L. Leipuner, W. Chinowsky, F. Shively, and R. Adair, Phys. Rev. Letters 6, 283 (1961).
- M. M. Block, E.B. Brucker, R. Gessaroli, T. Kikuchi, A. Kovacs, C.M. Meltzer, R. Kraemer, M. Nussbaum, A. Pevsner, P. Schlein, R. Strand, H.O. Cohn, E.M. Harth, J. Leitner, L. Lendinara, L. Monari, and G. Puppi, (submitted to Nuovo cimento).
- R. Ely, S. Fung, G. Gidal, Y. Pan, W. Powell, and H. White, Bull. Am. Phys. Soc. 6, 291 (1961).
- 7. M. Gell-Mann, Phys. Rev. 106, 1297 (1957).
- 8. P. Amati, A. Stanghellini, and B. Vitali, Phys. Rev. Letters 5, 524 (1960), Nuovo cimento 13, 1143 (1959).
- 9. R. Dalitz and S.F. Tuan, Phys. Rev. Letters 2, 425 (1959).
- 10. R. Dalitz, Phys. Rev. Letters 6, 239 (1961).
- 11. Ph. Meyer, J. Prentki, and Y. Yamaguchi, Phys. Rev. Letters 5, 442 (1960).
- 12. J. L. Shaw, University of California at La Jolla (private communication).

-6-

FIGURE LEGENDS

Fig. 1. Dalitz plots for the reactions:
(a)
$$K^{-} + p \rightarrow \Sigma^{+} + \pi^{-} + \pi^{0}$$
 (57 events)
(b) $K^{-} + p \rightarrow \Sigma^{-} + \pi^{+} + \pi^{0}$ (54 events)
(c) $K^{-} + p \rightarrow \Sigma^{0} + \pi^{+} + \pi^{-}$ (27 events).

Fig. 2. Mass plots of the charged and neutral Σ -w systems, including curves sepresenting phase-space distributions.

(a) Mass of $(\Sigma\pi)^{-}$, from the reactions: $K^{-} + p \rightarrow \Sigma^{0} + \pi^{-} + \pi^{+} \rightarrow \Sigma^{-} + \pi^{0} + \pi^{+}$ (b) Mass of $(\Xi\pi)^{+}$, from the reactions: $K^{-} + p \rightarrow \Sigma^{0} + \pi^{+} + \pi^{-} \rightarrow \Sigma^{+} + \pi^{0} + \pi^{-}$ (c) Mass of $(\Sigma\pi)^{0}$, from the reactions: $K^{-} + p \rightarrow \Sigma^{+} + \pi^{-} + \pi^{0} \rightarrow \Sigma^{-} + \pi^{+} + \pi^{0}$.

.

Mass (211) VIVIEVI

