UCLA

Posters

Title

Controlled Mobility for Increased Lifetime in Wireless Sensor Networks

Permalink

https://escholarship.org/uc/item/8686v73p

Authors

Arun Somasundara Aman Kansal David Jea et al.

Publication Date

2004

S Center for Embedded Networked Sensing

Controlled Mobility for Increased Lifetime in Wireless Sensor Networks

Arun Somasundara, Aman Kansal, David Jea, Mani Srivastava Networked & Embedded Systems Lab (NESL) - http://nesl.ee.ucla.edu

Introduction: Controlled Mobility

Ways of Data Collection

Single hop

Cellular Networks

Multi-hop

•Non-uniform resource consumption •Mobile element traverses the network •Powerful radio at the sender •Reduced life time due to relaying

Mobile base station

•Not resource constrained

•Random

- •No delay guarantees
- •DataMule, Zebranet, Whalenet

Types of Mobility

Predictable

BusNet

Controlled

- Control in Space
- •Control in Time (moves on a trail)

Problem Description: Design network algorithms and control the motion of mobile

Design Choices

- •Multiple small multihop networks
- •Initial training phase:
 - •On-path nodes
 - •Trees rooted at these.

<u>Network</u> <u>Mobile</u>	Without Precaching	With Precaching
Mobile stops on hearing from a node	Unpredictable Delays	Unpredictable Delays More memory at on-path nodes
Mobile moves with fixed RTT	Less data from >1-hop nodes	More memory at on-path nodes

Proposed Solution: Mobile moves with fixed RTT (T), On-path nodes do precaching

Algorithm on the mobile

Count the samples received from each node Sort and mark the first K nodes

Start moving at speed 2s $(s ext{ is speed required to cover trail in time } T$

On hearing from any of the K nodes, not heard before in this round

Start a timer set to (T/2)(1/K)

Stop till timer expires Timer expired

Response heard from a new node in the K-set before timer expires

Add (T/2)(1/K) to the timer

Network Algorithm

Theoretical Analysis

MODEL & ASSUMPTIONS

- •Network of N nodes deployed in a circular area of radius d
- •Radio range of nodes r
- •The mobile moves along the dotted path
- •It is within 1 hop of all the nodes sometime
- •Mobile is in range of k nodes at all times
 - $\bullet \mathbf{k} = (N) * (\pi r^2) / (\pi d^2)$
- •Channel bandwidth is W

RESULTS

- •Distance moved by mobile
 - •assuming d is an even multiple of r
- •L = $(2\pi d^2)/4r + (d-2r)$
- •Capacity = $(W/N) * 2\pi d^2/(2\pi d^2 + 4rd 8r^2)$

