
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Computational Methods for Exploring Nucleosome Dynamics

Permalink
https://escholarship.org/uc/item/86f7p934

Author
Polishko, Anton

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86f7p934
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Computational Methods for Exploring Nucleosome Dynamics

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Anton Polishko

June 2014

Dissertation Committee:

Dr. Stefano Lonardi , Chairperson
Dr. Marek Chrobak
Dr. Neal Young
Dr. Tao Jiang

Copyright by
Anton Polishko

2014

The Dissertation of Anton Polishko is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I was very lucky to join PhD Program at University of California, Riverside.

For the past five years I met a lot of awesome people and had great experiences that

contributed to my personality.

I am infinitely grateful to my advisor, Stefano Lonardi, without whose help, I

would not have been here. His kind and unobtrusive guidance was allowing me to have

all the research freedom I needed and, at the same time, steered my focus on the most

important things.

I am very thankful to Dr. Karine Le Roch for the opportunity to work on the

cutting edge projects in the field of computational biology and to collaborate with great

researches from Dr. Le Roch’s lab: Nadia Points, Evelien Bunnik and Xueqing Lu.

My thanks goes to all the professors that greatly contributed to my training, es-

pecially to Christian Shelton, Neal Young, Stefano Lonardi, Tao Jiang, Marek Chrobak,

Eamon Keogh and Michalis Faloutsos. Their enthusiasm in teaching and doing research

encouraged me to pursue much higher goals than I would without them.

Chapter 2 appeared in Bioinformatics, in the publication “NOrMAL: accurate

nucleosome positioning using a modified Gaussian mixture model.”, co-authored with

N. Ponts, K. G. Le Roch and S. Lonardi [54]

Portions of Chapter 3 are based on the paper “PuFFIN - A Parameter-free

Method to Build Nucleosome Maps from Paired-end Reads”, co-authored with E. M.

Bunnik, K. Le Roch and S. Lonardi. Some of the results appeared in BMC Genomics,

in paper “DNA-encoded nucleosome occupancy regulates transcriptional levels in the

human malaria parasite Plasmodium falciparum”, co-authored with E. Bunnik, J. Prud-

homme, N. Ponts, S. S. Gill, S. Lonardi and K. G. Le Roch.

iv

To all my friends and family.

Great thanks for support to my parents Ludmila and Sergey Polishko.

v

ABSTRACT OF THE DISSERTATION

Computational Methods for Exploring Nucleosome Dynamics

by

Anton Polishko

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2014

Dr. Stefano Lonardi , Chairperson

Nucleosomes are the basic elements of DNA chromatin structure. Not only

they control DNA packaging but also play a critical role in gene regulation by allowing

physical access to transcription factors. In addition to providing the positions of nu-

cleosomes and the occupancy level it is becoming more and more important to resolve

possible overlaps, extract additional information about nucleosomes like the probability

of placement, and determine whether they are well-positioned or fuzzy in the sequenced

cell sample.

In this dissertation, we address some of the computational issues associated

with the analysis of sequencing data enriched for nucleosomes. We propose two novel

algorithms to create nucleosome maps, for single- and paired-end sequencing data re-

spectively. Then, we study the problem of aligning these maps.

The first method, called NOrMAL, is based on a novel parametric probabilis-

tic model of a nucleosome. Expectation maximization is used to learn the parameters

of a Gaussian mixture model. Extensive experiments on real and synthetic data shows

that our method can produce very accurate maps, and can detect a larger number of

nucleosomes than published tools.

vi

The second method, called PuFFIN, takes advantage of paired-end short reads

to build genome-wide nucleosome maps. In contrast to other approaches that require

users to optimize several parameters according to their data (e.g., the maximum allowed

nucleosome overlap or legal ranges for the fragment sizes) our algorithm can accurately

determine a genome-wide set of non-overlapping nucleosomes without any user-defined

parameter. On the real data PuFFIN detects stronger associations between nucleosome

occupancy and gene expression levels compared to other tools, which indicates that our

tool extracts more biologically-relevant features from the data.

Finally, we then study the problem of aligning nucleosome maps, which is NP -

complete when the number of maps is three or more. We use effective bounding tricks

to limit the size of the problem and use linear programming to solve it. Our evaluations

on the synthetic data shows that our aligning tool consistently outperforms the naive

(greedy) approach and it is faster than dynamic programming.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 NOrMAL: Accurate Nucleosome Positioning using a Modified Gaus-
sian Mixture Model 6
2.1 Previous work . 8
2.2 Methods . 11

2.2.1 A Probabilistic Model for Nucleosomes 11
2.2.2 Mixture model . 14
2.2.3 Choosing the number of nucleosomes 16
2.2.4 Practical considerations . 18

2.3 Experimental Results . 19
2.4 Conclusion . 30

3 PuFFIN - A Parameter-free Method to Build Nucleosome Maps from
Paired-end Reads 31
3.1 Previous work . 32
3.2 Methods . 34

3.2.1 Computing Nucleosome Profiles and Nucleosome Landscapes . . 34
3.2.2 Detecting Candidate Nucleosomes 38
3.2.3 Building the Final Solution . 38
3.2.4 Running Time . 40

3.3 Experimental Results . 41
3.3.1 Results on Synthetic Data . 42
3.3.2 Results on Real Data . 47

3.3.2.1 Association between nucleosome occupancy and gene ex-
pression . 50

3.4 Conclusion . 52

4 ThIEF: a Novel Tool for Tracking Genomic Features 53
4.0.1 Problem definition . 54

4.1 Previous work . 55
4.2 Methods . 57

4.2.1 Naive Greedy approach . 57

viii

4.2.2 ThIEF:Iterative algorithm . 59
4.2.3 ThIEF:LP Linear Programing Solution 61

4.3 Experimental Results . 62
4.3.1 Performance Analysis . 64
4.3.2 Execution Time . 65

4.4 Conclusion . 67

5 Conclusions 70
5.1 Publications . 70

Bibliography 72

ix

List of Figures

1.1 Nucleosome structure. (Resource: Pearson Education, Inc 2009) 2
1.2 Example of combining MAINE and FAIRE raw coverage functions. Re-

source: [56] . 3

2.1 Nucleosomes are represented by ovals, mapped reads by arrows (which
correspond to 5’→3’ prefixes of nucleosome-bound DNA). Coverage pro-
files are represented as time series for forward (top) and reverse (bottom)
strands: the line style (solid, dotted, dashed) indicates peaks originating
from distinct nucleosomes. A represents a stable nucleosome; B illus-
trates overlapping nucleosomes; C represents “fuzzy” nucleosomes. . . . 7

2.2 Proposed probabilistic model for a single nucleosome 13
2.3 The proposed graphical mixture model: shaded nodes correspond to ob-

served variables, white nodes correspond to hidden variables 14
2.4 Sketch of the proposed NOrMAL algorithm 17
2.5 An example of two overlapping nucleosomes. (A) Coverage profile from

synthetic data (forward on strand top, reverse strand on bottom), where
nucleosomes overlap about 35%; nucleosomes detected using Template
Filtering allowing overlap (B), NOrMAL allowing overlap (C), Tem-
plate Filtering disallowing overlap (D), and NOrMAL disallowing
overlap (E); nucleosome reported by Template Filtering with nucle-
osome size range [40,200] (F) and [100,300] (G) 21

2.6 Size distribution of reported nucleosomes for S. cerevisiae 24
2.7 Distribution of pairwise distances between corresponding nucleosomes re-

ported by TF and NOrMAL for S. cerevisiae 25
2.8 Distribution of distances between corresponding nucleosomes reported by

TF (range [80,200]) and NOrMAL for P. falciparum (chromosome 1)
across all seven time points . 26

2.9 Size distribution of reported nucleosomes for P. falciparum (chromosome
1) across all seven time points . 27

2.10 Two examples of nucleosome maps for chromosome 1 of P. falciparum
(TOP: “0” is location 148,500bp, BOTTOM: “0” is location 111,500bp):
forward and reverse coverage profiles are shown on top; nucleosomes are
represented by ovals where the height of each nucleosome represents the
confidence score . 29

3.1 Sketch of the proposed PuFFIN algorithm 40

x

3.2 Synthetic illustrative example. A) read coverage; B) Nucleosome profiles
{Sαk} for α1 = 0.07 (blue), α2 = 0.21 (green), α3 = 0.62 (red) C) Corre-
sponding nucleosome landscapes {Nαk} (see text for detailed explanation) 42

3.3 A “toy” example. A) Raw coverage; B) Nucleosome landscapes for differ-
ent choices of α ∈ [0.05, 0.63); C) NucPosSimulator result; D) PuF-
FIN result; E) Template Filtering result; F) NOrMAL result; . . . 43

3.4 Distribution of the distances between detected and true locations for A)
100%, B) 60% and C) 0% fuzzy dataset 45

3.5 Dependency between the percentage of fuzzy reads in the sample (X axis)
and the number of detected nucleosomes (Y axis) for synthetic dataset 47

3.6 Distribution of the distances between adjacent nucleosomes for A) Nuc-
PosSimulator B) PuFFIN . 48

3.7 Dependency between the fold coverage (X axis) and number of detected
nucleosomes (Y axis) for P. falciparum 49

3.8 Association between nucleosome occupancy and gene transcription levels.
TOP: analysis for [5] data, BOTTOM: for [3]. A,E: Average number of
nucleosomes per kilobase upstream of the TSS versus average expression
level for each transcription cluster; B,F: Average nucleosome score up-
stream of the TSS versus average expression level; C,G: Average number
of nucleosomes per kilobase inside coding regions versus average expres-
sion level for each transcription cluster; D,H: Average nucleosome score
inside coding regions versus average expression level. Value r represents
Spearman’s correlation coefficient . 51

4.1 An illustration of the genomic-feature map aligning problem 54
4.2 The naive (greedy) approach for aligning genome feature maps 58
4.3 An illustration of the naive (greedy) method creating a sub-optimal align-

ment . 59
4.4 Sketch of ThIEF:Iterative . 61
4.5 Sketch of ThIEF:LP algorithm . 63
4.6 Percentage of true alignments recovered for several choices of movement

parameter σ . 64
4.7 Percentage of true positive alignments in the output recovered for several

choices of movement parameter σ . 65
4.8 Dependency between execution time of ThIEF:Iterative and the num-

ber of maps to align, for different choices of the number of features. . . . 67
4.9 Dependency between execution time of ThIEF:Iterative and the num-

ber of features, for 5 and 6 maps . 68
4.10 Dependency between execution time of ThIEF:LP and the number of

maps to align, for different choices of number of features. 68
4.11 Dependency between execution time of ThIEF:LP and the number of

features, for 5 and 6 maps . 69

xi

List of Tables

2.1 The parameters used to generate the reads in Figure 2.5, and the corre-
sponding output results from Template Filtering and NOrMAL . 20

2.2 Experimental results on the S. cerevisiae dataset: number of nucleosome
detected by Template Filtering and NOrMAL and corresponding
execution time . 25

2.3 Number of nucleosomes reported for P. falciparum (chromosome 1) for
different time-points (TF: Template Filtering, parameter in square
brackets is the range of admissible nucleosome sizes) 30

3.1 Number of reported nucleosomes and execution times on yeast and the
human malaria parasite. 49

xii

Chapter 1

Introduction

One of the central problems in molecular biology is to characterize all cellular

processes controlling gene regulation. The complex interaction between DNA chromatin

structure and transcription factors is one of these key processes. To study these inter-

actions it is crucial to know the exact location of nucleosomes and how the position of

nucleosomes is changing over time.

The nucleosome is the basic unit of chromatin structure. It is composed of

DNA wrapped around a protein complex of eight histones (see Figure 1.1). The size of

the DNA wrapped around the histone complex is about 146bp, and is called nucleosomal

DNA. The portion of DNA between nucleosomes is called the linker. In some organisms,

linkers have a typical size (i.e., for yeast is about 20bp), while for others (i.e., Plasmod-

ium falciparum) linker regions can be of any length. Nucleosome-free regions (NFR)

play an important role in transcription regulation, because they allow access to special

DNA binding proteins called transcription factors that control the activation of gene

transcription. As a consequence, nucleosome positioning not only allows DNA packaging

but influences gene expression (see, e.g., [77]). Loosely speaking, the more compact is

1

Figure 1.1: Nucleosome structure. (Resource: Pearson Education, Inc 2009)

the chromatin, the harder it is for transcription factors and other DNA binding proteins

to access DNA and trigger transcription. Nucleosome positions also affects a variety of

cellular and metabolic processes like centromere formation, recombination, replication,

and DNA repair. Thus, to elucidate the role of interactions between chromatin and

transcription factors, it is crucial to determine the location of all nucleosomes along the

genome by building genome-wide nucleosome maps and to study how these maps change

over time.

Several wet-lab protocols have been developed to build genome-wide nucleo-

some maps. For instance, one can enrich for genomic regions that are either bound to

histones (typically via chromatin immuno-precipitation or ChIP) or for genomic regions

that are free of nucleosomes (i.e., linkers). For instance, MAINE (MNase Assisted Iso-

lation Nucleosomal Elements) [83] isolates the portions of the DNA that are attached

to nucleosomes, because MNase preferentially digests linker regions. Then, tiling mi-

croarrays (ChIP-chip) or sequencing (ChIP-Seq/MNase-Seq) are applied to the enriched

DNA. A complementary approach, called FAIRE (Formaldehyde- Assisted Isolation of

2

Figure 1.2: Example of combining MAINE and FAIRE raw coverage functions. Re-
source: [56]

Regulatory Elements) [23, 24], isolates sequences from linker DNA rather than nucleo-

somes. The procedure is similar to MAINE, the only difference is the resulting sequences

originates from linker DNA rather than nucleosomes. We should also note that MAINE

and FAIRE can be used as complementary approaches to improve the accuracy of nucle-

osome mapping (see Figure 1.2). Since experimental results from these complementary

approaches are not always available, in this dissertation we focus on analyzing data from

the more popular MAINE-Seq protocol.

We can classify computational solutions to the problem of detecting nucleo-

some positions depending on the type of technology used to obtain the data. The first

type of technology are tiling microarrays. Tiling microarray technology allows one to

sample specific location in the genome, i.e., the location for which a probe is represented

3

on the chip. Due to the fact that we sampling a subset of locations, nucleosome maps

obtained from microarrays are low resolution. For microarray data, the first challenge

is to “extrapolate” the available information genome-wide. In order to achieve this

generalization, different strategies have been proposed. For instance, one could build

a probability model based on the available data. Then, one can either use a thermo-

dynamic model [67], or hidden Markov Model (HMM) [81] or a HMM in combination

with wavelet transformation [80] to place the nucleosomes. These approaches have good

accuracy but are limited only to nucleosomes that are strongly positioned (i.e., they

have a strong signal).

When the cost of high-throughput sequencing dropped significantly, it quickly

became the main tool for studying chromatin structure. Enriched DNA products ob-

tained from MAINE and FAIRE protocols can be sequenced and corresponding reads

can be mapped to the reference genome. Because reads can potentially map to any lo-

cation in the genome, nucleosome maps obtained from MAINE-Seq and FAIRE-Seq are

high-resolution (i.e., single base pair resolution). Nowadays high-resolution analysis has

became the main tool for study chromatin structure in a large number of organisms (see,

e.g., [1, 19, 20, 35, 45, 46, 64, 74, 77, 1, 69, 46, 55, 20, 88, 85, 66]). These latter methods

generally outperform low-resolution approaches and potentially can detect nucleosome

dynamics [65].

In this dissertation, we assume that the sequencing data is either MNase-Seq

or ChIP-Seq, which are currently the most popular approaches to study nucleosome and

histone modifications. More specifically, we describe algorithmic methods to analyze

single- and paired-end sequencing data from MNase-Seq.

In Chapter 2, we describe a novel tool to build nucleosome maps, called NOr-

MAL, that uses a modified Gaussian mixture model. NOrMAL was specifically de-

4

signed to deal with the single-end reads. It uses Expectation Maximization (EM) to infer

the size of nucleosome enriched fragments to improve the accuracy of the positioning.

In Chapter 3, we present another method, called PuFFIN, which is a parameter-

free method to build nucleosome maps from paired-end reads. PuFFIN exploits the

length information available for paired-end data to avoid the inference of the size of nu-

cleosome enriched fragments. Our approach uses a multi-scale approach for the analysis

of the data, which eliminates the need to specify parameters.

In Chapter 4, we discuss the problem of studying dynamics of nucleosomes. We

formulate the problem of aligning maps of genomic features (i.e., nucleosomes) as a multi-

target tracking problem and present a novel tool, called ThIEF, to track nucleosomes

across time points.

5

Chapter 2

NOrMAL: Accurate Nucleosome

Positioning using a Modified

Gaussian Mixture Model

In this Chapter we concentrate on the analysis of single-end sequencing data,

given the prevalence of MNase/ChiP-Seq experiments in the recent literature. The

computational analysis of sequencing data usually consists of two steps: (1) a nucleo-

some occupancy coverage is computed from the process of mapping nucleosome-enriched

sequenced reads to a reference genome, followed by some normalization steps; (2) nu-

cleosomes are placed according to the peaks of the coverage profile.

Approaches based on peak-calling are computationally fast and quite accurate

in resolving isolated (stable) nucleosomes, however they are not entirely reliable when

more complex nucleosome configurations are present. Observe that while it is physically

impossible for two nucleosome to be “overlapping” on the same location on a DNA

strand, it is quite common that the population of cells from which the enriched DNA

6

A B C

Figure 2.1: Nucleosomes are represented by ovals, mapped reads by arrows (which cor-
respond to 5’→3’ prefixes of nucleosome-bound DNA). Coverage profiles are represented
as time series for forward (top) and reverse (bottom) strands: the line style (solid, dotted,
dashed) indicates peaks originating from distinct nucleosomes. A represents a stable
nucleosome; B illustrates overlapping nucleosomes; C represents “fuzzy” nucleosomes.

was obtained had nucleosomes slightly “off-sync” at a given genomic coordinate. As a

consequence, the resulting coverage profile will exhibit a “blurring” of the peaks.

Molecular biologists distinguish the case of “overlapping” nucleosome from

“fuzzy” nucleosomes or “fuzzy” regions (see Figure 2.1). For overlapping nucleosomes,

the overlap is relatively small; in the “fuzzy” case, several nucleosomes are mutually

overlapping for a significant fraction of their size. This definition can be made precise

by introducing a user-defined threshold parameter on the allowed overlap.

Another shortcoming of peak-calling approaches is that they can only report

nucleosome positions and/or occupancy level, but molecular biologists need additional

information about nucleosomes. For instance, they are interested in the level of “fuzzi-

ness” in certain genomic locations with respect to coding regions (i.e., well-positioned for

all the cells in the sample, or “blurred”), how strong is the binding between nucleosomes

7

and DNA, etc. To address these shortcomings we propose a method that determines

the accurate position of nucleosomes independently from the amount of overlaps in the

nucleosomes and that can extract other important statistics about nucleosomes, e.g., the

probability that a nucleosome is actually present, a measure of nucleosome “fuzziness”,

and the expected size of DNA fragments enriched for nucleosomes.

Here we propose a parametric probabilistic model for nucleosome positioning,

which we called NOrMAL (NucleOsome Mapping ALgorithm). NOrMAL uses Ex-

pectation Maximization to infer its parameters. To demonstrate the performance of our

method, we report experimental results on MAINE-Seq data for Plasmodium falciparum

[56], and Saccharomyces cerevisiae [77]. We compare the performance of our method

against the Template Filtering algorithm [77], which is considered the current state-

of-the-art in terms of accuracy and ability to estimate sizes of the DNA fragments

bound to nucleosomes. We also discuss a fundamental limitation of greedy peak-calling

approaches in the case of overlapping nucleosomes and how our method addresses this

issue.

2.1 Previous work

Several landmark studies have been published in the last few years on the chro-

matin structure of model organisms based on the analysis of genome-wide nucleosome

maps (see, e.g., [1, 69, 74, 46, 55, 20, 45, 88]). Existing methods in the literature are

based on the analysis of the peaks in the nucleosome occupancy coverages estimated by

mapping nucleosome-enriched reads to the reference genome. The coverage occupancy

profile is an integer-valued function defined for all genomic locations: given a position i

in a chromosome the function is equal to the number of sequenced reads that are mapped

8

to location i. From a probabilistic point of view, the coverage profile represents a non-

parametric distribution of nucleosome positions. At the time of writing, the length of

the reads obtained by second-generation sequencing (e.g., Illumina Genome Analyzer)

are limited to about 100 bases and the sequencing occurs in the 5’→3’ direction. In the

case of ChIP-Seq/MAINE-Seq, sequenced reads that can be uniquely mapped to the

positive strand originate from the left boundary of nucleosome DNA fragments, while

reads uniquely mapped to the negative strand originate from the right boundary (see

Figure 2.1). Recall that nucleosomes are composed of about 146bp of DNA, so if reads

are single-end and shorter than 146 bases, we expect to observe a peak in the forward

and a peak in the reverse coverage profiles at a distance consistent with the nucleosome

size.

The problem of associating a peak in the forward strand with the correct peak

in the negative strand can be difficult in the case of a large number of complex nucleo-

some configurations. Some authors artificially extend the reads in the 5’→3’ direction or

they shift the positions of the mapped read position of the forward and reverse towards

the middle of potential nucleosomes. Then, they combine (e.g., sum) the forward and re-

verse modified coverages to build a score function. In both cases, they need to determine

the amount of the extension or the size of the shift. In the former case, the extension

should account for the expected length of the DNA fragments enriched for nucleosomes;

in the latter the shift should be about half of the DNA fragment size. The problem of

this approach is that no extension or shift that will work equally well for all nucleosomes

in the genome. While one should expect DNA fragments enriched for nucleosomes to be

about 146 bp, the reality is that the digestion process can either leave non-nucleosome-

bound DNA in the sample or “over-digest” the ends of nucleosome-bound DNA. What

complicates the matter further is that the rate of digestion is sequence-dependent, so

9

nucleosomes in different genomic locations will end up with different DNA fragment

size. For this reason, it is advantageous to “learn” this information from the input data.

Template Filtering [77] is one of the first methods that can handle variable fragment

sizes in a specified range, whereas other methods require users to decide this value in

advance.

As said, a variety of peak-calling algorithms have been also developed (see,

e.g., [1, 19, 20, 35, 45, 46, 64, 74]). Most of these methods have been proposed for

the analysis of ChIP-chip or ChIP-Seq data to determine the position and strength

of transcription factor binding to DNA. The problem of detecting transcription factor

binding sites is similar to nucleosome positioning: in both cases we need to infer position

of proteins binding to DNA from the coverage profiles. However the size of nucleosomes is

significantly bigger than transcription factor binding sites, as a consequence the resulting

configurations of nucleosomes can be more complex.

To summarize our experience with existing methods on the genome-wide nu-

cleosome study of human malaria parasite [55, 56], peak-calling approaches suffer from

a variety of problems. First, the coverage profile function has to be cleaned of high-

frequency noise, typically via a kernel density estimation method [53]. The type of

kernel and the amount of smoothing can drastically affect the results: too much can

merge adjacent peaks, too little can leave too many noisy artifacts that can be inter-

preted as individual peaks. Second, peak finding algorithms have parameters (like the

extension and the shift discussed above) that are difficult to optimize: a set of parameter

can work for a region of a chromosome but not for another. Third, peak-calling do not

properly resolve overlapping nucleosomes. For instance, Template Filtering [77] uses

a greedy strategy: nucleosomes are placed according to the “best” matching peaks in

the score function. Once these strong-positioned nucleosome are assigned, Template

10

Filtering ignores any nucleosome that overlaps with previous ones. It is relatively easy

to show that for overlapping nucleosomes the greedy strategy does not always return

the best overall placement (see Section 2.3 for details).

2.2 Methods

Next we propose a parametric probabilistic model to find the most likely set

of nucleosome that best “explain” the mapped reads. We cast this problem in a mod-

ified Gaussian mixture model framework. The problem of positioning nucleosomes is

then reduced to the problem of learning the parameters of the model and finding the

distribution of mixture components, which is achieved via Expectation Maximization.

2.2.1 A Probabilistic Model for Nucleosomes

We employ a probabilistic model for nucleosome positioning that is described

by a set of hidden and observed variables. We use N to denote the number of DNA

fragments obtained after MNase digestion. For any DNA fragment i ∈ [1, N], let xi be

the starting position of the 5’ end of fragment i (obtained by mapping a corresponding

sequenced read), and let variable di ∈ {+1,−1} be the strand on which fragment i was

mapped (+1 for the positive strand, and −1 for the negative strand). Also, let zi be

the length of fragment i. If we use variable mi to denote the position of the center of

fragment i, then we have mi = xi + (dizi)/2.

We denote with Xi, Di, Zi and Mi the random variables associated with vari-

ables xi, di, zi and mi, respectively. Since the sequencing process is 5’→3’, the value of

Xi is observable by means of mapping a read originating from fragment i. Similarly, the

strand variable Di is also observable. Variables Zi and Mi can be observed directly only

11

if sequencing produces paired-end reads, otherwise these variables are hidden. In order

to consider the most general case, we only deal with the latter case (single-end reads).

We assume for the time being that the number K of nucleosomes is given. We

will discuss how to choose K in Section 2.2.3. For each DNA fragment i, we use a

hidden variable Ci ∈ [1,K] to represent which nucleosome it belongs. Each nucleosome

j ∈ [1,K] is described by a set of six variables (µj , σj ,∆j , δ
+1
j , δ−1

j , πj), where µj denotes

the center position of nucleosome j, σj is the fuzziness associated with the position of

nucleosome j, ∆j describes the length of DNA fragments associated with nucleosome j,

δ+1
j and δ−1

j represent the variation on fragment sizes for positive and negative strands

respectively, and πj is the probability of nucleosome j. The degree of fuzziness captures

the variation of the position of a particular nucleosome in the population of sampled

cells. Well-positioned nucleosomes have very low degree of fuzziness. We introduce two

variables δ+1
j and δ−1

j to model the variation of the fragment size because MNase does

not only digest nucleosome-free DNA. Given enough time, it can also digest the ends of

the fragments bounds to nucleosomes, but the rate of digestion is sequence-dependent

(see, e.g., [77]). Since the sequence composition of the 5’ end of a DNA fragment can be

quite different from the 3’ end, we need to have two different variables. The value of Ci

is drawn from (1, 2, . . . ,K) with corresponding probabilities (π1, π2, . . . , πK). Parameter

πj models the contribution of j-th nucleosome to the occupancy level, i.e., what portion

of the mapped reads belong to nucleosome j.

Our nucleosome model assumes that our random variables are distributed ac-

cording to a normal distribution. For convenience of notation, we set Θj = (µj , σj ,∆j ,

δ+1
j , δ−1

j , πj) for all j ∈ [1,K], and Θ = (Θ1, . . . ,ΘK). First, we assume that variable

Mi associated with the center of fragment i for a particular nucleosome j is distributed

12

µj − ∆ j /2 µj + ∆ j /2

∆ j

µj

Figure 2.2: Proposed probabilistic model for a single nucleosome

as follows

P (Mi|Ci = j,Θ) ∼ N(µj , σ
2
j) (2.1)

where µj represents the center of nucleosome j and σj is its fuzziness. Second, we assume

that the length Zi of fragment i for a particular nucleosome j is distributed as follows

P (Zi|Di = di, Ci = j,Θ) ∼ N(∆j , (δ
di
j)2) (2.2)

where ∆j represents the expected size of the fragments for nucleosome j, and δ+1
j and δ−1

j

represent the variation of fragment sizes for positive and negative strands, respectively.

Combining Equations (2.1) and (2.2) and relation xi = mi− (dizi)/2, and then

applying the rule of linear combination of independent Gaussians we obtain

P (Xi|Di=di, Ci=j,Θ)∼N
(
µj−(di∆j)/2, σ

2
j+(δdij /2)2

)
(2.3)

Equation (2.3) allows one to compute the probability of a given data point xi

given the parameters of a nucleosome.

13

...

C

Figure 2.3: The proposed graphical mixture model: shaded nodes correspond to observed
variables, white nodes correspond to hidden variables

Figure 2.2 illustrates our proposed model for a single nucleosome model. On

the top, we show the location and the direction of the reads that belong to a nucleo-

some at location µj of size ∆j . On the bottom, we drew the corresponding Gaussian

distributions (Equation (2.3)) that model the forward and reverse reads (red and blue

curves, respectively).

Next we describe the model for multiple nucleosomes.

2.2.2 Mixture model

Next, we introduce a generative mixture model to describe the likelihood of

input data points X = (x1, . . . , xN). Figure 2.3 shows a graphical representation of

the mixture model. In Equation (2.3) the only hidden random variable is C because

we already excluded variables zi from the computation. By grouping variables Xi, Di

we can use an approach similar to a naive Bayes classifier. Variable C represents the

nucleosome to which the points belong. Thus, we can describe the likelihood of point

(xi, di) given the parameters of our model as a mixture of distributions. Using the

14

Bayesian rule we obtain

P (Xi|Di=di,Θ)=
K∑
j=1

P (Ci=j,Θ)P (Xi|Di=di, Ci=j,Θ)

=

K∑
j=1

πjf
(
xi, µj−di∆j/2, σ

2
j +(δdij/2)2

)
(2.4)

where f(x, a, b) = 1√
2πb
e−

(x−a)2
2b is the Gaussian density function.

Using Equation (2.4) we can obtain the log-likelihood of observed data points

X given parameters Θ as

l(X|Θ)=
N∑
i=1

logP (Xi=xi|Di = di,Θ)

=
N∑
i=1

log

 K∑
j=1

P (Ci=j,Θ)P (Xi|Di=di, Ci=j,Θ)


=

N∑
i=1

log

 K∑
j=1

πjf
(
xi, µj−di∆j/2, σ

2
j +(δ

(d)
j /2)2

) (2.5)

Given Equation (2.5) and input data points X = (x1, . . . , xN) we can find an

estimate the parameters of the model Θ via maximum likelihood

Θ̂ = argmaxΘl(X|Θ) (2.6)

Recall that Θ = (Θ1, . . . ,ΘK) is a vector whose components are the nucleo-

some parameters Θj = (µj ,∆j , σj , δ
(+1)
j , δ

(−1)
j , πj) for all j ∈ [1,K]. The presence of

parameters πj that correspond to hidden variables Ci prevents us from solving Equa-

tion (2.6) directly. We estimate Θ̂ via Expectation Maximization (EM). In our case,

the E step requires computing the posterior probabilities P (Ci = j|Xi = xi; Θ) of data

points xi, i ∈ [1, N] with respect to the distribution of Ci given the current estimate of

15

parameters Θ(t)

Q(Θ|Θ(t)) = EC|X,Θ(t) l(X|Θ) (2.7)

During the E step we supplement the missing data in Equation (2.6) with the expected

values under the current parameter estimates Θ(t). In the M step, we find new parameter

estimation Θ(t+1) by maximizing Equation (2.7)

Θ(t+1) = argmaxΘQ(Θ|Θ(t)) (2.8)

It is relatively straightforward to bound the variation parameters (σ, δ+1, δ−1)

during the iterative EM process to converge to a solution with “reasonable” parame-

ters. We can also easily introduce prior distribution for some of the parameters. For

instance, we can specify an expected distribution for DNA fragment sizes ∆j , which can

be obtained via gel electrophoresis prior to the sequencing experiment.

2.2.3 Choosing the number of nucleosomes

The method described above assumes that the number of clusters K is known.

The problem of selecting the best value for K is as challenging as selecting the optimal

number of clusters in k-means clustering. One can estimate the number of clusters by

looking at the support area of the occupancy coverage, but this will be quite inaccurate

because “fuzzy” nucleosomes correspond to wider peaks, and the support area is bigger

for them.

Here we propose a simple but effective heuristic to find K. We start by (1)

placing the maximum possible number of non-overlapping nucleosomes uniformly dis-

16

Data: a set of input data points X
Result: a set of model parameters Θ = (Θ1, ...,Θkres)
µ0 ← (µ1, µ2, . . . , µK) , where µi is uniformly distributed
π0 ← (1

K ,
1
K , . . . ,

1
K) ∈ RK

t← 0,Θ(t) ← (µ0, σ0,∆0, δ
+1
0 , δ−1

0 , π0)
Soft Learning
repeat

while not converged do

Q(Θ|Θ(t))← EC|X,Θ(t) l(X|Θ)

Θ(t+1) ← argmaxΘQ(Θ|Θ(t))
t← t+ 1

end
for ∀j ∈ [1,K − 1] do

if |µj − µj+1| ≤ threshold then
Merge clusters i and i+ 1

end

end

until no clusters were merged ;
Hard learning
for ∀i ∈ [1, N] do

Ci ← argmaxj(Tij)
end
Recompute cluster parameters Θ
return Θ

Figure 2.4: Sketch of the proposed NOrMAL algorithm

tributed on the chromosome, that is K = (size of the chromosome)/(expected size of

a nucleosome), where the expected size of nucleosomes is underestimated. Then, (2)

we run our EM algorithm until convergence (“soft learning”). We will then (3) check

the distance between the clusters, and merge those that have too much overlap (above

a specified threshold). In case of multiple overlaps for a nucleosome, we merge it with

the closest one. We repeat (2) and (3) until no additional clusters are merged. After a

few cycles we will obtain a set of non-overlapping clusters that best explain the given

data points. Overlapping nucleosomes are merged into new ones and then the position

of new nucleosomes are learned from the data.

This procedure will give us a good estimate on the number of clusters and

a rough estimate of nucleosome positions as well. To further improve accuracy for

17

other model parameters we perform one iteration of “hard learning” by assigning each

data point xi its maximum probable cluster. Nucleosome clusters will partition the

set of input points, which in turns will allow us to compute their parameters more

accurately. The pseudo-code of the algorithm is shown on Figure 2.2.2. The running

time of NOrMAL is dominated by the running time of Learning step (Algorithm 2.2.2,

line 6). Observe that the probability that a data point belongs to far-away nucleosomes

is close to zero, so one can avoid unnecessary computations by computing updates only

for clusters in close vicinity of each point.

The bottleneck in the running time is the heuristics to find the number of

nucleosomes K. In order for the algorithm to scale to eukaryotic genomes additional

optimization steps will have to be implemented. During the early stage of soft-learning

(i.e., active cluster merging) the algorithm could be applied to small “chunks” of chro-

mosomes. Then, when the number of merges reduces substantially, the nucleosome maps

for each chunk can be combined and algorithm continues to the hard-learning step.

2.2.4 Practical considerations

Our method requires users to specify three parameters, namely the threshold

for allowed overlap between adjacent nucleosomes, the prior ∆ on nucleosome sizes and

the prior λ on nucleosome weights.

The threshold for allowed overlap can significantly affect the output: the more

overlap is allowed the more nucleosomes can be placed. This parameter has to be spec-

ified by the user, and cannot be inferred from the data. The prior ∆ on the nucleosome

size and the prior λ on the nucleosome weight control the propagation of “knowledge”

from data points on forward strand to data points on the reverse strand, and vice versa.

Based on our experience if the prior size ∆ is within 30bp of the “true” fragment size,

18

then the algorithm is consistent in its output.

Our implementation has some additional internal parameters that we are not

expecting users to change. While inferring the parameters of our mixture models some

clusters will tend to cover most of the data points using large variances: a common

trick to avoid this from happening is to introduce hard limits on such parameters. Our

implementation has range limits for the nucleosome sizes and variance to force the

method to converge to “reasonable” nucleosome sizes/variances in the early stage of the

iterative process. These parameters have been chosen loose enough so by the end of

the iterative process the limits for nucleosome size and variance are rarely hit, and the

output is not significantly affected. The hard learning step completely ignores those

upper limits.

2.3 Experimental Results

We carried out extensive benchmarking between our proposed method NOr-

MAL and Template Filtering (TF) [77]. We selected TF because it is considered the

current state-of-the-art. It is the only method that in addition to nucleosome positions

can extract nucleosome fragment sizes and binding scores. TF differs from the tradi-

tional peak-calling algorithms because it does not look for peaks in the coverage profiles,

but it places nucleosomes at the peaks of a correlation score matrix. Due to its greedy

strategy, TF has significant limitations when dealing with overlapping nucleosome, as

explained next.

The setup for the comparison is as follows. The input parameters for NOr-

MAL are the prior size of the nucleosome fragments and the allowed amount of overlap

between nucleosomes. For TF we used default parameters, unless specified otherwise.

19

Parameter True value Template Filtering NOrMAL

µ1 210 208 206
∆1 130 125 134
µ2 300 301 300
∆2 150 149 148

Table 2.1: The parameters used to generate the reads in Figure 2.5, and the correspond-
ing output results from Template Filtering and NOrMAL

The default allowed range of nucleosome size for TF is [100,200], which centered around

the expected nucleosomes size of about 146bp.

Synthetic Data. First, we want to illustrate the challenge for existing nucleosome

positioning methods to deal with the placement of overlapping nucleosomes. The prob-

lem derives from the difficulty in distinguishing two overlapping nucleosomes from the

“fuzzy” case. To define precisely this problem we need to introduce a threshold param-

eter: when the percentage of overlap between two nucleosomes exceeds the threshold

they should be considered “fuzzy”, otherwise they should be treated as separate over-

lapping nucleosomes. It is relatively easy to show that the greedy strategy does not

always give the optimal nucleosome placement in case of overlapping nucleosomes. To

do so, we have created a small synthetic dataset that contains reads corresponding to

two overlapping nucleosomes. Although our own parametric model could be used to

generate the synthetic data, we have employed a different approach to avoid the pos-

sibility of giving an advantage to our method. We generated the input data according

to the template function described in [77]. The parameters for nucleosome positions

(µ1 and µ2) and nucleosome sizes (∆1 and ∆2) that we used to generate the reads are

reported in Table 2.1. Figure 2.5-A illustrates the coverage profile for mapped reads.

Observe that there are two peaks on forward and reverse strands, which indicates the

presence of two nucleosomes. The percentage of overlap is roughly 35%. In the first

20

case we allowed such amount of overlap in both TF and NOrMAL (Figure 2.5-B for

TF and Figure 2.5-C for NOrMAL). Both methods correctly reported two overlapping

nucleosomes. Observe the error-bars attached to the boundaries of nucleosomes reported

by NOrMAL that indicate the positional variance of the corresponding boundary (each

bar has length 3

√
σ2
i + δdii

2
). TF does not provide such information.

100 150 200 250 300 350 400

100 150 200 250 300 350 400

100 150 200 250 300 350 400

100 150 200 250 300 350 400

100 150 200 250 300 350 400

100 150 200 250 300 350 400

100 150 200 250 300 350 400

A: Coverage profile

(two nucleosomes,

 overlap about 35%)

forward

reverse

B: Template Filtering

(max 35% overlap,

 size [100,200])

C: NOrMAL

(max 35% overlap)

D: Template Filtering

(max 30% overlap,

 size [100,200])

E: NOrMAL

(max 30% overlap)

F: Template Filtering

(max 30% overlap,

 size [40,200])

G: Template Filtering

(max 30% overlap,

 range [100,300])

Figure 2.5: An example of two overlapping nucleosomes. (A) Coverage profile from
synthetic data (forward on strand top, reverse strand on bottom), where nucleosomes
overlap about 35%; nucleosomes detected using Template Filtering allowing overlap
(B), NOrMAL allowing overlap (C), Template Filtering disallowing overlap (D),
and NOrMAL disallowing overlap (E); nucleosome reported by Template Filtering
with nucleosome size range [40,200] (F) and [100,300] (G)

In the second case, when the parameters are set so nucleosomes are not allowed

to overlap more than 30%, only one nucleosome should be reported. Figure 2.5-D and

21

Figure 2.5-E illustrates the output of TF and NOrMAL, respectively. Observe that

now there is a fundamental difference: TF’s greedy strategy reports the presence of the

first nucleosome, but then it completely ignores the data corresponding to the second

nucleosome. This is an entirely arbitrarily choice and the user won’t be even aware of

this. In contrast, NOrMAL reports one nucleosome positioned near the centroid of the

data points and correctly indicates that the variance of the nucleosome boundaries in

this case is very high, indicating that this nucleosome should be considered “fuzzy”.

In addition, TF’s positioning results can be very sensitive to its main input

parameter, namely the allowed range for nucleosome fragment sizes. With the default

size range [100,200], the output of TF for the input in Figure 2.5 is shown in Figure 2.5-

D. When we change the range to [40,200], TF’s output is shown on Figure 2.5-E. If we

extend the range to [100,300] the output is shown in Figure 2.5-G. Even if we allow a

larger overlap, TF will produce the output shown in Figure 2.5-G. These results are not

intended to prove that TF is flawed, but to warn users that the range parameter has

be chosen carefully to produce good results. NOrMAL can also produce unsatisfactory

results if the prior size specified is very far from the true size. The main difference,

however, is that range for TF is a hard boundary, while the prior distribution for the

fragment sizes in NOrMAL is “soft” and it will adapt to the data.

Real data. The challenge for nucleosome position inference is that the true positions

of nucleosomes are unknown. The lack of a “ground-truth” makes it very hard to

benchmark existing computational methods. To compare between methods we can only

use conservative indicators. We argue that a valuable indicator is the number of reported

nucleosomes, however it is difficult to argue about performance in objective terms. That

is why the first dataset we considered is from S. cerevisiae [77]. This was the original

22

dataset for which TF was designed. The results of TF on this dataset are assumed to

be accurate.

To compare NOrMAL and TF we used the following setup. The main range

parameter for TF was set to [80, 200], which is slightly wider than the default parameters.

We did not want to penalize TF, since NOrMAL does not have any hard limits for

the nucleosome sizes. For NOrMAL the main parameter is the prior expected value

for the nucleosome sizes: we used 140bp to hit the middle of the specified range of TF.

The threshold value of allowed overlap for both methods was set at 35%. All other

parameters were left to default values. The results of both methods are reported in

Table 2.2. Observe that NOrMAL is slower, but it returns on average 2.6% more

nucleosomes than TF.

If we compare the distribution of reported nucleosome sizes (see Figure 2.6),

both method provide consistent results. Note that while the prior size for NOrMAL

was set to 140bp, but the model learned a new value for the data. To compare how

reported nucleosomes are related to each other we performed a matching procedure. We

built a bipartite graph, where a node corresponds to a reported nucleosome (each part

corresponds to one of the two methods). The bipartite graph is fully connected, and the

weight on edge (u, v) is the squared distance between nucleosome u and v: when the

distance between u and v exceeded 50bp, we set the weight to ∞. Then we solved the

weighted assignment problem between the two sets using the Hungarian method. The

distribution of pairwise distances between matching nucleosomes is shown in Figure 2.7.

Observe that the distribution is a unimodal bell-shaped curve with mean and mode

having near zero value. The number of matched (common) nucleosomes is 81.44% of

23

80 100 120 140 160 180 200

Template Filtering

NOrMAL

80 100 120 140 160 180 200

Figure 2.6: Size distribution of reported nucleosomes for S. cerevisiae

the total: 8.29% and 10.27% are unique to NOrMAL and TF, respectively.

While the dataset for S. cerevisiae is considered to have relatively stable set

of nucleosomes [77], the dataset for the human malaria parasite P. falciparum has very

dynamic nucleosomes [55]. The considered dataset consists of seven time-points (namely,

0, 6, 12, 18, 24, 30, 36 hours), each related to a different stage on the cell cycle [61].

The experiment assumes that cells are “synchronized” at each time-point, but obviously

the synchronization is not perfect. As a consequence, we expect a large number to

nucleosomes to exhibit a “fuzzy” behavior.

First, we performed nucleosome placement with the same setup as with the

yeast dataset. The distribution of fragment sizes is quite different in this case (see

Figure 2.9-TOP). NOrMAL reports fragment sizes with a mean value of 105bp and

24

Chr # reads Template Filtering Time (sec) NOrMAL Time (sec)

1 16,688 1,033 1.38 1,078 6.86
2 78,543 4,284 7.37 4,394 84.56
3 30,589 1,583 4.43 1,618 8.49
4 138,801 7,975 16.36 8,014 369.11
5 55,601 2,986 4.02 3,101 38.80
6 26,141 1,403 1.63 1,453 4.45
7 101,981 5,727 9.84 5,817 126.34

Table 2.2: Experimental results on the S. cerevisiae dataset: number of nucleosome
detected by Template Filtering and NOrMAL and corresponding execution time

0 20 40-40 20

Figure 2.7: Distribution of pairwise distances between corresponding nucleosomes re-
ported by TF and NOrMAL for S. cerevisiae

mode value of about 120bp, whereas TF reports a distribution with mean and mode of

about 84bp. If we perform the matching of the reported nucleosomes the distribution

of distances is much wider than for yeast (see Figure 2.8). Now only 50% of all detected

nucleosomes are in common between two methods. A total of 32,38% and 17,62% are

unique to NOrMAL and TF, respectively. As expected, the disagreement between

NOrMAL and TF is much higher on this dataset, due to presence of a much higher

fraction of overlapping/fuzzy nucleosomes.

Two examples of the disagreement between TF and NOrMAL are shown in

Figure 2.10. Forward and reverse coverage profiles with extension to 35bp are shown on

25

0 20 40-40 20

Figure 2.8: Distribution of distances between corresponding nucleosomes reported by
TF (range [80,200]) and NOrMAL for P. falciparum (chromosome 1) across all seven
time points

top. Nucleosomes are represented by ovals, where the height of each oval represents the

confidence score. NOrMAL also reports the variance associated with the left and the

right boundary, represented with error-bars.

In Figure 2.10-TOP, we have labeled corresponding nucleosomes 1–6. Some

observations are in order. First, nucleosome 3 is an incarnation of the synthetic example

in Figure 2.5-DE. The coverage profile around coordinate 800 shows two heavily over-

lapping nucleosomes that should be reported as one “fuzzy” nucleosome. However, TF

reports the position of the nucleosome using the stronger pair of forward/reverse peaks

and completely ignores the other pair of peaks. As a consequence, the coordinate of the

reported nucleosome is shifted compared to the centroid of the four peaks. NOrMAL

instead correctly places one nucleosome at the centroid with a relatively high fuzzyness

score. Nucleosome 3 is also quite fuzzy, and it is better placed by NOrMAL. Some

disagreement exists on nucleosome 6 as well. The left boundary of that nucleosome

detected by TF correspond to a very weak peak. This is due to the fact that TF’s

26

80 100 120 140 160 180 200

80 100 120 140 160 180 200

Template Filtering, range [80,200]

NOrMAL

0 50 100 150 200 250

0 50 100 150 200 250

Template Filtering, range [20,250]

NOrMAL

Figure 2.9: Size distribution of reported nucleosomes for P. falciparum (chromosome 1)
across all seven time points

placement is based on the correlation score rather than the intensity of the peak. In

fairness, both methods assign nucleosome 6 a very low confidence score. Finally, TF

27

detects additional nucleosomes a and b, whereas NOrMAL reports additional nucleo-

some c. All these nucleosomes have low confidence scores. Our method did not report

a and b because it explained the data using fuzzy nucleosome 2. NOrMAL should

have merged nucleosome c to nucleosome 1, but because the overlap did not exceed the

chosen threshold those two nucleosomes were not merged.

Figure 2.10-BOTTOM illustrates a more complex example of coverage profile:

even for trained experts placing nucleosomes here would be very challenging. The output

of NOrMAL and TF are quite consistent for nucleosomes associated to strong peaks.

In the regions with high density of peaks, TF tends to place nucleosomes of small sizes

(see also Figure 2.9-BOTTOM) and pack them as tight as possible according to allowed

overlapping threshold.

In order to increase the agreement between TF and NOrMAL we tried to

extend the range of nucleosome sizes for TF to [20,250]. Observe that by comparing

Figure 2.9-TOP and Figure 2.9-BOTTOM, the size distribution for NOrMAL are the

same (only truncated in Figure 2.9), while the distribution for TF has changed com-

pletely, again pointing out how this range parameter can drastically change the results.

Using the extended range, TF was allowed to place smaller nucleosomes so the mode

and the mean of the size distribution shifted to smaller values. According to the authors

of TF such small nucleosomes can be due to problems in the experimental procedure,

namely overexposing the sample to the MNase digestion. However, we have hard evi-

dence from the gel electrophoresis analysis that the expected size of sequenced fragments

in our samples after digestion was about 130bp (without adapters). We speculate that

TF’s approach might have a problem when the range of admissible nucleosome sizes is

too wide, and the algorithm confuses boundaries of neighboring nucleosomes.

28

reverse

forward

0 200 400 600 800 1000 1200 1400

NOrMAL

Template Filtering

1

1

2

2

3

3

4

4

5

5

6

6

a b

c

0 200 400 600 800 1000 1200 1400

0 200 400 600 800 1000 1200 1400

reverse

forward

Template Filtering

NOrMAL

0 500 1000 1000 1500 2000 2500 3000 3500 4000 4500

0 500 1000 1000 1500 2000 2500 3000 3500 4000 4500

0 500 1000 1000 1500 2000 2500 3000 3500 4000 4500

Figure 2.10: Two examples of nucleosome maps for chromosome 1 of P. falciparum
(TOP: “0” is location 148,500bp, BOTTOM: “0” is location 111,500bp): forward and
reverse coverage profiles are shown on top; nucleosomes are represented by ovals where
the height of each nucleosome represents the confidence score

The number of reported nucleosomes for all time points is shown in Table 2.3.

Observe that for time points 0-24 hours, the number of nucleosomes reported by NOr-

MAL is between TF with range [80,200] and [20,250]. However, recall that the extended

range [20,250] is likely to be unreliable. For time point 30h and 36h, NOrMAL identi-

fies a higher number of nucleosomes. The 30h and 36h marks correspond to the schizont

stage of the P. falciparum life cycle [61]. During this stage the parasites divide and a

29

Time TF [80-200] TF [20-250] NOrMAL

0h 1,720 2,031 1,934
6h 1,491 1,826 1,720
12h 1,461 2,158 2,043
18h 1,185 1,665 1,537
24h 1,440 1,910 1,766
30h 1,723 2,229 2,443
36h 1,701 2,514 2,788

Table 2.3: Number of nucleosomes reported for P. falciparum (chromosome 1) for differ-
ent time-points (TF: Template Filtering, parameter in square brackets is the range
of admissible nucleosome sizes)

large number of nucleosome are added.

2.4 Conclusion

In this Chapter we presented a parametric probabilistic model for nucleosome

positioning framed in the context on a modified Gaussian mixture model. Our method

directly addresses the challenges imposed by overlapping and fuzzy nucleosomes, their

detection and the inference of their characteristics. We demonstrated with a synthetic

example that the current state-of-the-art method does not properly handle complex

overlapping configurations. On real data, our method detects a higher number of nucle-

osomes with higher quality detection of nucleosome sizes.

30

Chapter 3

PuFFIN - A Parameter-free

Method to Build Nucleosome

Maps from Paired-end Reads

In this Chapter, we introduce a novel method, called PuFFIN, that takes ad-

vantage of paired-end short reads to build genome-wide nucleosome maps with larger

numbers of detected nucleosomes and higher accuracy than existing tools. In contrast

to other approaches that require users to optimize several parameters according to their

data (e.g., the maximum allowed nucleosome overlap or legal ranges for the fragment

sizes) our algorithm can accurately determine a genome-wide set of non-overlapping

nucleosomes without any user-defined parameter. This feature makes PuFFIN signifi-

cantly easier to use and prevents users from choosing the “wrong” parameters and obtain

sub-optimal nucleosome maps.

31

3.1 Previous work

An analysis of the literature reveals that the majority of nucleosome maps

have so far been produced from single-end reads (which are less expensive to obtain

than paired-end reads). As a consequence, nearly all computational methods available

assume that the input data are single-end reads. Nucleosome positioning from single-

end reads is, however, more computationally challenging and much less precise than if

paired-end data was available. Paired-end reads allow one to determine both ends of

nucleosome-enriched DNA fragments, whereas with single-end reads one either obtains

one “boundary” or the other. In the latter case, the problem of associating a peak in the

forward strand with the correct peak in the negative strand can be difficult, in particular

for complex nucleosome configurations.

Existing methods for single-end reads either rely on the assumption that nucleo-

some-enriched DNA fragments are expected to be of a size compatible with the nucleo-

some (≈ 146 bp), or use probabilistic models to estimate these sizes from the data. From

our experience, the first approach can lead to poor results because there is no fragment

size that will work equally well for all nucleosomes in the genome. While one would

expect nucleosome-enriched DNA fragments to be about 146 bp, in MNase-Seq the di-

gestion process can either leave nucleosome-free DNA in the sample, or “over-digest”

the ends of nucleosome-bound DNA. Furthermore, the rate of digestion is sequence-

dependent [2, 77], so nucleosomes in different genomic locations can end up with different

DNA fragment sizes.

Despite these challenges, the majority of so-called “peak-calling” approaches

usually rely on the assumption that the data is derived from nucleosome-sized DNA

fragments and consist of following steps: (1) a nucleosome occupancy score function is

32

obtained from mapping nucleosome-enriched reads to the reference genome, followed by

counting, smoothing and normalization; (2) candidate nucleosomes are placed according

to the peaks of the score function; (3) the final set of nucleosomes is selected to satisfy

additional constraints (which are tool-dependent). To compute the occupancy score,

different techniques have been proposed, ranging from simply computing the number

of reads covering each genomic location, to sophisticated statistics to estimate the false

discovery rate. For instance, nucleR, [21] uses the raw coverage with extensive “profile

cleaning” based on the Fourier transform, whereas NSeq [50] employs a triangle statistic

based on read counts within a sliding window. From a probabilistic point of view,

the occupancy score represents a non-parametric distribution of nucleosome positions.

Despite being defined non-parametric, building such a score function relies heavily on a

user-defined parameters (e.g., window sizes, smoothing parameters, etc).

A second group of methods is based on probabilistic models. Our tool NOr-

MAL [54] uses a modified Gaussian mixture model to infer nucleosome-enriched frag-

ment sizes. The parametric probabilistic model allows to deal with the problem of

overlapping and complex configurations of nucleosomes. In previous chapter, we showed

that additional information about nucleosome fragment size could significantly improve

the accuracy of nucleosome mapping for the organisms, which have complex nucleosome

patterns. Developed in parallel with NOrMAL, Ping [85] employs a similar probabilis-

tic model. Both tools provide a clear advantage over algorithms that rely on the user

to provide estimated DNA fragment sizes. Even-though these models are parametric,

these approaches are much more robust against wrong choices in user-defined param-

eters, because they can adapt to the data. One should also keep in mind that being

based on iterative procedures to infer parameters, the performance of these methods

also depends from (several) internal parameters.

33

Finally, a distinct group of positioning methods depend on the availability of

a control track (i.e., “naked” DNA), e.g., NucleoFinder [4], while others have been

designed to perform differential nucleosome positioning, e.g., Danpos [9] and DiNuP

[22].

In this chapter, we focus on the problem of determining nucleosome positions

based on the availability of paired-end reads (without a control track). To the best of

our knowledge, NucPosSimulator [66] is the only published tool specifically designed

to take advantage of paired-end reads: to place nucleosomes it solves the optimization

problem of selecting the subset of peaks which maximizes the total score, under the

constraint that these peaks are located at the expected nucleosome distance from each

other. Our tool PuFFIN (Positioning for Fuzzy and FIxed Nucleosomes) instead uses

a novel multi-resolution approach: while its algorithm is relatively simple, our approach

introduces some novel ideas that have the potential to be useful in other domains of

genome analysis.

3.2 Methods

Our method consists of three steps: (A) we build a set of nucleosome profiles

and nucleosome “landscapes”; (B) we detect candidate nucleosome locations on each

profile; (C) we select a “consensus” set of nucleosomes that satisfies non-overlapping

constraints. We discuss these steps in detail in the next subsections.

3.2.1 Computing Nucleosome Profiles and Nucleosome Landscapes

We first map sequenced reads to the reference genome and then compute a

nucleosome profile that represents the likelihood that a genomic location is occupied

34

by a nucleosome. Candidate nucleosomes are detected at the peaks of the nucleosome

profile. In order to reduce false positives, profiles have to be cleaned from their high

frequency component. Choosing the best smoothing method (and its parameters) is,

however, not easy. For instance, in [21] the authors show that the kernel density estima-

tion method [53] works significantly better than moving average-based smoothing. The

choice of kernel parameters is also important: too much smoothing can merge adjacent

peaks, too little can leave noisy artifacts that can be interpreted as peaks and thus

introduce spurious nucleosomes. To address the challenges of choosing the “right” ker-

nel and smoothing parameters, we follow an alternative (novel) procedure to construct

nucleosome profiles.

First, we replace each mapped paired-end read i with a function fαwii dis-

tributed as a Gaussian with mean µi and standard deviation αwi, i.e.,

fαwii (x) =
1

αwi
√

2π
e
− (x−µi)

2

(αwi)
2

where µi is the genomic center location of read i, wi is the length of read i (i.e., the

distance between the leftmost nucleotide in the left mate and rightmost nucleotide of

the right mate), and α is a smoothing parameter. Replacing each mapped read with a

gaussian distribution allows us to model probabilistically the uncertainty in the paired-

end mapping. For instance, when the left and right mate are mapped far from each

other, the mass of the gaussian will be distributed on a longer interval because of its

large variance. If instead the left and right mate are close to each other, the gaussian

will have its mass concentrated at the center of the read, indicating a higher confidence

in the nucleosome position.

Then, we compute the nucleosome profile Sα as the weighted sum of functions

35

fαi for all the mapped reads in the input

Sα(x) =
n∑
i=1

βif
αwi
i (x)

where n is the number of mapped reads in input, and βi is the weight of the read i. If we

had employed a uniform weighting scheme (βi = 1
n), paired-end reads with very short

insert would dominate the profiles. To reduce the effects of short DNA fragments, we

use a non-uniform weighting scheme. For paired-end reads that are shorter than 146bp,

we assign a penalty factor γ(w) < 1 , such that the shorter the read is, the less the

weight is (i.e., βi = 1
nγ(wi)). Additionally, one could use the weights βi to account for

sequence quality of individual reads, mappability biases, etc.

As said, parameter α controls the smoothness of function Sα. The bigger is α,

the smoother is Sα (peaks will be wider), and vice versa. When α is large, we capture

nucleosome binding preferences at a lower resolution scale; when α is small we can

detect nucleosomes at a high resolution scale (but noisier). In the limit α→ 0, function

Sα(x) → ∑n
i=1 χ(x − µi), where χ(x) =


1, x = 0

0, x 6= 0

is the indicator function. In this

case, S0(x) represents how many read centers cover location x in the genome.

One might think that one could obtain the same profiles by computing the

read coverage function smoothed by a Gaussian kernel. There is, however, a significant

difference: the size of each mapped read independently influences the shape of Sα (no

matter what smoothing parameter is chosen), while in the case of kernel smoothing the

impact of read sizes becomes less and less important as the smoothing strength increases.

Since we do not know the appropriate value for α for the data, in this step

we generate a family of functions for several choices of α. Formally, we create a set

36

of m functions {Sαk}k=1,2,...,m = {Sα1 , Sα2 , . . . , Sαm}, where α1 < α2 < · · · < αm are

m distinct choices for α. The value m is hard-coded in our implementation (we used

m = 40 for all the experiments).

The set of functions {Sαk}k=1,2,...,m enables our algorithm to detect candidate

locations for nucleosomes at different resolution scales, thus eliminating the need to

specify in advance the parameters for the range of nucleosome-enriched fragments. In

other words, our algorithm can “adapt” to the local properties of the input data by

processing the same location at different resolutions (corresponding to the choices of α).

Finally, we compute a set of nucleosome landscapes {Nαk}k=1,2,...,m by normal-

izing each function Sαk by the lowest resolution function SA, as follows

Nαk(x) = log

(
Sαk(x) + ε

SA(x) + ε

)

where ε > 0 is a small constant to avoid a division by zero, and A > maxk=1,2,...,m αi. In

our implementation we pick α to range from 0.05 to 0.63 and A = 1.5. Since mappability

biases affect each function {Sαk}, we can effectively reduce these biases by taking the

log ratio of high-resolution and low-resolution function. Another reason to carry out

this normalization step is to reduce the differences in the peak heights.

To illustrate the multi-resolution approach in our algorithm, we created a small

synthetic dataset with four nucleosomes shown in Figure 3.2. Panel A shows the raw cov-

erage obtained by mapping synthetic paired-end reads to the reference genome. Observe

that nucleosomes I,III and IV are strongly positioned, while nucleosome II is “fuzzy”.

Fuzzy nucleosomes are quite common and occur when a subset of the cells in the sample

has a nucleosome at one location, while in the other subset the same nucleosome is

slightly shifted. Nucleosome I is isolated, while nucleosomes III and IV are located very

37

close to each other. Panel B shows the family of functions {Sαk} for three choices of α;

panel C illustrates the set of nucleosome landscape functions {Nαk}. Observe in Fig-

ure 3.2C that the transformation amplifies candidate peaks in areas with low coverage

and reduces the amplitude of peaks in regions with high coverage.

3.2.2 Detecting Candidate Nucleosomes

By construction, a nucleosome landscape Nαk represents a non-parametric dis-

tribution of nucleosomes at resolution αk. The presence of a peak in any nucleosome

landscape indicates a candidate nucleosome. The reads that form corresponding peak

belong to that candidate.

A peak is defined by a pair (q, s) where q is the center of the peak and s is

the width of the peak. We say that (q, s) is a peak for function N when N(q) is local

maximum for N and s = minz(|q − z|) where z is any local minimum for function N .

Detecting peaks on each function Nαk can be easily computed in linear time

along the length of the genome. As a result, for every choice of αk, k = 1, 2, . . . ,m

we have a set of peaks Pαk = {pk1 , pk2 , . . . , pkl}, where pkj is a pair (center, width)

representing the peak, and l is the number of peaks.

Peaks are however not guaranteed to have a symmetric shape. We therefore

recompute the location of every nucleosome candidate as the centroid location of its read

midpoints. This additional step ensures that candidate nucleosome locations properly

represent the corresponding input reads.

3.2.3 Building the Final Solution

We now explain how to build the final set of non-overlapping nucleosomes from

the family of peak sets {Pαk}k=1,...,m. We say that two peaks (q1, s1) and (q2, s2) overlap

38

if |q1 − q2| < 146 (the size of a nucleosome). Observe that by construction, the number

of peaks detected at lower resolution (i.e., for large α) will be smaller than or equal to

the number of peaks detected at higher resolution, i.e., |Pα| ≤ |Pβ| when α > β. As we

increase the smoothing parameter α, the total number of peaks decreases: while some

peaks are preserved, others are merged. In other words, for every peak in Pα we can

find at least one corresponding peak in Pβ if α > β.

Based on this observation, we build the final set of non-overlapping nucleosomes

C as follows. Given a family of peak sets {Pαk}k=1,...,m where α1 < α2 < · · · < αm, we

process each peak set Pαk in increasing order for α. We add a peak p from the current

set Pαk to the final solution C if p does not overlap with any other peak in the set Pαk

and if p does not overlap with any other peak already in C. A sketch of the algorithm

can be found in Figure 3.1.

Let us consider again our example in Figure 3.2. Detected peaks are marked

with circles in panel C. The algorithm first processes the set of peaks on the blue

function (α = 0.07). Since there are no peaks on that curve that are located at a

distance greater than 146bp from each other, the final set C remains empty. Next,

the algorithm processes the green curve (α = 0.21): here there are three peaks that

satisfy the non-overlapping constraint. Thus, the algorithm adds those peaks (marked

with solid circles) to C. Then, the algorithm considers the red curve (α = 0.62): all

four peaks are non-overlapping with each other, however only one peak (marked with

the solid circle) can be added to C. As a result, the final solution C consists a set

of four peaks that match the original nucleosomes. Observe that strongly positioned

nucleosomes I, III and IV are detected earlier in the algorithm (α = 0.21) than fuzzy

nucleosome II (α = 0.62).

39

Data: {(x1, y1), (x2, y2), ..., (xn, yn)} - a set of n paired-end input reads,
xi is leftmost and yi - rightmost coordinate

(α1, α2, ..., αm) - a set of choices for smoothing parameter α and a
predefined constant A > αi, i = 1..m
Result: C - resulting set of nucleosomes
for ∀i = 1..n do

µi ← xi+yi
2 - location of the midpoint for read i

wi ← (yi − xi) - size of read i
end
for ∀α ∈ {α1, ..., αm} do

Sα(x) =
∑n

i=1 βif
αwi
i (x) where fαwii (x) = 1

αwi
√

2π
e
− (x−µi)

2

(αwi)
2

Nα(x) = log
(
Sα(x)+ε
SA(x)+ε

)
, where ε > 0

end
for ∀Nα ∈ N = {N1, ..., Nαm} do

Pα ← a set of peaks for Nα, each peak corresponds to some candidate
nucleosome

end
C ← ∅ - a consensus set of nucleosomes to report
for k ∈ 1, . . . ,m do

for ∀ peak (q, s) ∈ Pαk do
if |q − φ| > 146,∀φ 6= q such that (φ, ψ) ∈ Pαk ∪ C then

C ← C ∪ (q, s)
end

end
Pαk ← Pαk \ C

end
return C

Figure 3.1: Sketch of the proposed PuFFIN algorithm

3.2.4 Running Time

To compute a set of profile functions Sα we use a precomputed set of curves fαwi

for every choice α and w in a predefined range. As a result, it takes Θ(nm) operations,

where n is the number of reads and m is the number of curves. In our implementation

we used m = 40 choices of equally distributed values for α ∈ [0.05, 0.63].

Finding peaks on each curve Sα takes Θ(l) time, where l is the length of

the processed region. Thus, the total time to find candidate nucleosomes (Figure 3.1,

lines 1-3) is Θ(m(n + l)). Building the resulting set of non-overlapping nucleosomes

is determined by the number of candidates that is at most Θ(ml). Given that m is

40

predefined, it follows that the total running time is linear in the region size and number

of input reads.

3.3 Experimental Results

To evaluate the performance of PuFFIN, we performed extensive benchmark-

ing against NucPosSimulator, Template Filtering and NOrMAL. NucPosSim-

ulator is the only published tool designed to deal with paired-end reads [66]. As said,

it solves the optimization problem of selecting the subset of peaks which maximizes the

total score, under the constraint that these peaks are located at the expected nucle-

osome distance from each other. Template Filtering is one of the first algorithms

developed to infer the size of the fragments from single-end reads [77]. NOrMAL uses a

modified Gaussian model to cluster input single-reads such that every cluster represents

a nucleosome [54]. Some of the recently published tools that use a control sample to

solve the nucleosome positioning problem, e.g., Danpos and NucleoFinder, are not

included in this comparison.

We used default parameters for each tool except for the following provisions.

For Template Filtering and NOrMAL we set to zero the allowed overlap between

adjacent nucleosomes to allow for a fair comparison with PuFFIN and NucPosSimu-

lator.

Arguably the major challenge for nucleosome position inference is that the true

positions of nucleosomes are unknown. The lack of a “ground-truth” makes it very hard

to benchmark existing computational methods. For this reason we made extensive use

of synthetic data, as explained next.

41

200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400 1600 1800

A)

B)

C)

I IIa

IIb

III IV

α = 0.62

α = 0.21

α = 0.07

α = 0.62

α = 0.21

α = 0.07

Figure 3.2: Synthetic illustrative example. A) read coverage; B) Nucleosome profiles
{Sαk} for α1 = 0.07 (blue), α2 = 0.21 (green), α3 = 0.62 (red) C) Corresponding
nucleosome landscapes {Nαk} (see text for detailed explanation)

3.3.1 Results on Synthetic Data

We started by producing a small dataset of reads corresponding to DNA-

enriched fragments for only one nucleosome (Figure 3.3). This allowed us to investigate

the behavior of these various tools in the scenario of low sequence coverage in a region

containing a fuzzy nucleosome. Nucleosome I is centered at 300bp and the paired-end

reads of size 146bp were generated with midpoints distributed according to Gaussian

with mean 300, and standard deviation 40. To simulate a low coverage scenario, we gen-

erated only twenty sequence reads (20-fold coverage). PuFFIN, Template Filtering

42

A)

B)

C)

D)

I

IIIII

IV

E) V

F) VI

Figure 3.3: A “toy” example. A) Raw coverage; B) Nucleosome landscapes for differ-
ent choices of α ∈ [0.05, 0.63); C) NucPosSimulator result; D) PuFFIN result; E)
Template Filtering result; F) NOrMAL result;

and NOrMAL report one nucleosome located at 308bp, 311bp and 292bp, respectively,

while NucPosSimulator reports two nucleosomes positioned at 221bp and 369bp. The

slight difference of the reported locations for the first three tools could be explained by

the small sample size that is insufficient to recover the true location. Interestingly, the

first two methods, which are based on peak-detection, produced a similar close right

shift, while the nucleosome detected by NOrMAL showed a small left shift. NucPos-

Simulator detected two distinct nucleosomes, probably because the objective of this

tool is to maximize the total score of reported nucleosomes. We believe that maximizing

43

this quantity has the undesirable effect to over-report nucleosomes (i.e., increase false

positives). Decreasing the smoothing parameter in NucPosSimulator from 20.0 (de-

fault) to 2.0 reduces the output to a single nucleosome, again demonstrating how the

choice of smoothing parameters can have significant effects on the results.

Next, we performed a more realistic comparison on in silico reads for larger

synthetic nucleosome maps. We used the nucleosome map generator syntheticNucMap

from nucleR [21]. This tool allows users to specify the number of well-positioned and

fuzzy nucleosomes, as well as the variance for the location of synthetic reads and the

coverage level. Well-positioned nucleosomes are placed along the chromosome regularly

spaced with a fixed linker size (we used linkers of 20bp, which introduces a periodicity

of ≈ 167bp). For fuzzy nucleosomes, locations are picked at random and independently

from other nucleosomes already on the chromosome. As a consequence, fuzzy nucleo-

somes can overlap with other nucleosomes. For the variance parameter we choose 30

bases for well-positioned and 50 bases for fuzzy nucleosomes.

Our objective was to investigate the accuracy of nucleosome detection as a

function of the fraction of fuzzy nucleosomes: we expected the detection problem to be-

come increasingly harder as the number of fuzzy/overlapping nucleosomes increases.

For each percentage level of fuzzy nucleosomes (0%, 10% . . . , 100%) we generated

ten datasets of synthetic reads for a map containing 1,000 synthetic nucleosomes. To

build these datasets, we used the following command: syntheticNucMap(wp.num=1100,

wp.del=(100+r*100), wp.var=30, fuz.num=(r*100), fuz.var=50, max.cover=70,

nuc.len=147, lin.len=20), where r controls the fraction of fuzzy nucleosomes (r = 0

is 0%, r = 1 is 10%, . . . , r = 10 is 100%).

For each group of ten datasets we measured the number of reported nucleo-

44

−100 −80 −60 −40 −20 0 20 40 60 80 100

A)

NucPosSimulator
PuFFIN
Template Filtering
NOrMAL

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

B)

−100 −80 −60 −40 −20 0 20 40 60 80 100

C)

Figure 3.4: Distribution of the distances between detected and true locations for A)
100%, B) 60% and C) 0% fuzzy dataset

somes and the accuracy of each tool, and reported the average and standard deviation

over the ten sets. To measure the accuracy, we calculated the distances between the

true nucleosome location and the center of the corresponding detected nucleosome. Re-

sults in Figure 3.4 show that PuFFIN reports nucleosome positions more accurately in

datasets with larger proportions of fuzzy nucleosomes. In addition, Figure 3.5 shows

the average number of nucleosomes detected by the various tools for increasing per-

centages of fuzzy nucleosome (the error bar represents the standard deviation over the

ten datasets). First observe that although each dataset is expected to have synthetic

reads for exactly 1,000 nucleosomes, this is only true for datasets with no fuzzy nucle-

45

osomes. Since fuzzy nucleosomes may overlap other nucleosomes, we expect to detect

a decreasing numbers of nucleosomes as the percentage of fuzzy nucleosomes increases

(which is reflected in Figure 3.5). Also observe in Figure 3.5 that in datasets with

more than 20% of fuzzy nucleosomes, NucPosSimulator detects the highest num-

ber of nucleosomes compared to other tools. However, as we demonstrated earlier in

Figure 3.3, NucPosSimulator can over-report nucleosomes. To explore whether this

was true on these larger datasets, we computed the distribution of distances between

adjacent nucleosomes (Figure 3.6). In the group of datasets with no fuzzy nucleosomes,

both NucPosSimulator and PuFFIN have strong peak at around 167bp location and

334bp. This is expected, because all nucleosomes are well-positioned and are located

at multiples of 167bp. However, as we increase the percentage of fuzzy nucleosomes in

the datasets, NucPosSimulator reports more and more nucleosomes exactly 148 bp

apart from each other, which suggests that its strategy to maximize the total score for

reported nucleosomes has the effect of reporting too many nucleosomes.

To eliminate the effects of over-reporting in NucPosSimulator, we discarded

from the counts nucleosomes that are located 148 bases or less from each other, such

that every pair of tightly placed nucleosomes is count as one nucleosome. In Figure 3.5,

curves marked “filtered” shows the results of this cleaning step. Observe that the number

of nucleosomes reported by NucPosSimulator drops significantly, while only a small

number of PuFFIN nucleosomes are affected. In fact, using this cleaning step, PuFFIN

reports a larger numbers of nucleosomes than NucPosSimulator. All together, these

experimental results on synthetic data show that PuFFIN generates more accurate

nucleosome maps, without over-reporting nucleosomes.

46

Figure 3.5: Dependency between the percentage of fuzzy reads in the sample (X axis)
and the number of detected nucleosomes (Y axis) for synthetic dataset

3.3.2 Results on Real Data

For the comparison of nucleosome positioning tools, we used a publicly available

dataset for S. cerevisiae (NCBI SRA SRR094649, [13]) and our dataset for P. falciparum

(NCBI SRA SRS453761). All datasets contain paired-end reads produced by an Illumina

sequencing instrument. Reads were mapped to their corresponding reference genomes

using Bowtie2 [40] with --very-fast-local --no-discordant flags. We removed

reads that were not mapped uniquely or had a distance between the left and right mates

smaller than 40bp or bigger than 1,000bp.

Experimental results are summarized in Table 3.1, which include the number

of reported nucleosomes and the execution time. Nucleosome positioning in S. cerevisiae

is extensively studied and the majority of the tools perform well on this organism. Also,

nucleosomes in yeast are well-positioned and not many overlaps are present. The results

in Table 3.1 show that the number of nucleosome reported in yeast by these tools are

47

100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

A)

0%
20%
40%
60%
100%

100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B)

Figure 3.6: Distribution of the distances between adjacent nucleosomes for A) NucPos-
Simulator B) PuFFIN

quite similar, except for NucPosSimulator that reports a significantly larger number.

These results possibly again suggest the over-reporting behavior of this tool.

Our previous work [54] has demonstrated that the P. falciparum genome has

a greater complexity of nucleosomes configurations. As expected, experimental results

show much greater variance in the number of nucleosomes in the malaria dataset reported

by the various tools. PuFFIN reports a similar number of nucleosomes compared to

NucPosSimulator, but significantly higher numbers than NOrMAL and Template

Filtering, indicating that our method is capable to resolve complex configurations of

nucleosomes.

The execution time of PuFFIN is higher than NOrMAL and Template

Filtering on both datasets, but shorter than NucPosSimulator on P. falciparum

48

Figure 3.7: Dependency between the fold coverage (X axis) and number of detected
nucleosomes (Y axis) for P. falciparum

S. cerevisiae (W303 contig 7) P. falciparum (3D7 chr. 2)
#nucleosomes time (sec) #nucleosomes time (sec)

Template Filtering 630 1 2,725 13
NOrMAL 592 4 3,247 40
NucPosSimulator 802 75 3,722 920
PuFFIN 709 165 3,760 350

Table 3.1: Number of reported nucleosomes and execution times on yeast and the human
malaria parasite.

and higher on S. cerevisiae datasets. Our implementation of PuFFIN is currently

written in Python, while the other tools use either Java or C/C++. We believe that

speed of our tool could be easily improved by one order of magnitude by implementing

it in C/C++.

To investigate the sensitivity of the tools on the quantity of the input data

(coverage), we performed an experiment in which an increasing fractions of the input

reads were discarded. Specifically, we sampled the P. falciparum dataset by randomly

49

selecting a given fraction of the input reads (20%, 30% . . . , 100%) and ran the four tools

on the resulting datasets. Subsamples have 7x, 14x,. . . , 63x fold coverage. Figure 3.7

shows that the performance of PuFFIN degrades monotonically as the quantity of the

data decreases, while NucPosSimulator remains more stable over a larger range of

input data. We therefore recommend to use sequence data with a minimum of 30-fold

for the analysis of nucleosome positions if PuFFIN is used.

3.3.2.1 Association between nucleosome occupancy and gene expression

PuFFIN was used to study the correlation between nucleososome positioning

and gene expression in the human malaria parasite [6]. As a part of that study we

carried out nucleosome positioning on two independent datasets for P. falciparum from

[5, 3]. The former dataset was composed by single-end reads, so we extended each reads

to 146 bp in order to use PuFFIN.

We performed an association analysis between gene expression levels (from

RNA-Seq data) and nucleosome occupancy (produced by PuFFIN) to test the hypoth-

esis that decreased nucleosome occupancy in promoter regions is associated with higher

transcriptional activity [42].

First, we grouped genes into ten transcription clusters based on steady-state

mRNA levels. Then, we computed nucleosome occupancy levels for the 500 bp region

directly upstream of the translation start codon and for gene bodies.

The analysis indicated a strong correlation between nucleosome density in the

promoter region (both in terms of number of nucleosomes and nucleosome levels) and

transcriptional activity. Figure 3.8 A,B,E,F clearly shows that highly expressed gene

clusters have a more open chromatin (i.e., less nucleosomes) than clusters of genes

with low expression values. We observed the opposite correlation between nucleosome

50

occupancy and transcriptional activity inside coding regions of highly expressed genes,

as compared to the promoter regions. Highly transcribed genes were on average bound

by more nucleosomes and at higher levels (Figure 3.8 C,D,G,H). We also tried a different

number of clusters, obtaining similar results.

We carried out the same analysis on nucleosome maps obtained by NOrMAL.

We observed similar, but somewhat weaker, association between nucleosome occupancy

and transcript levels in this case, indicating that PuFFIN extract more biologically-

meaningful features from the data over our previous tool NOrMAL.

Figure 3.8: Association between nucleosome occupancy and gene transcription levels.
TOP: analysis for [5] data, BOTTOM: for [3]. A,E: Average number of nucleosomes
per kilobase upstream of the TSS versus average expression level for each transcription
cluster; B,F: Average nucleosome score upstream of the TSS versus average expression
level; C,G: Average number of nucleosomes per kilobase inside coding regions versus
average expression level for each transcription cluster; D,H: Average nucleosome score
inside coding regions versus average expression level. Value r represents Spearman’s
correlation coefficient

51

3.4 Conclusion

In this Chapter, we described a novel method to solve the nucleosome position-

ing problem when paired-end data is available. Our method employs a multi-resolution

strategy that circumvents a smoothing step that usually requires user-defined parame-

ters to set the strength of the smoothing and type of kernel to be used. Experimental

results show that our method more accurately detects nucleosome positions as com-

pared to existing software tools, in particular when complex nucleosome configurations

are present in the data. On the human malaria parasite data produced by our collabo-

rators PuFFIN detected stronger associations between nucleosome occupancy and gene

expression levels compared to other tools, which indicates that our tool extracts more

biologically-relevant features from the data.

52

Chapter 4

ThIEF: a Novel Tool for Tracking

Genomic Features

Recent advancements in high-throughput DNA sequencing technology has led

to the rapid decrease in the cost associated with sequencing. This has enabled life

scientists to carry out increasingly large-scale experiments. For instance, in the context

of epigenetics, it is now relatively affordable to run multiple genome-wide experiments:

for example, one can take “snapshots” of nucleosome levels at different time points during

a particular cell cycle. As a result, this has opened the possibility of exploring nucleosome

dynamics. From an analytic point of view, the associated question is how to compare

multiple genome-wide nucleosome maps, either for evolutionally-related organisms, or

for the same organism at different conditions/time points. Similar problems arise in

genomics and epigenetics to analyze other genomic features that can change over time,

e.g., transcription factor binding events, DNA methylation, among others.

In this Chapter we focus on the general problem of comparing multiple genome-

wide “genomic-feature” maps. Arguably, the most natural way to compare nucleo-

53

Q1

Q2

Q3

Q4

Figure 4.1: An illustration of the genomic-feature map aligning problem

some/feature maps is to align them in a similar way we align DNA sequences: we put

multiple nucleosome/feature maps on top of each other, with the objective to “track”

the trajectory of each individual nucleosomes/feature across time, in a way that some

total cost (i.e., total traveled distance in the case of nucleosomes) is minimized. We call

such trajectory an alignment : similarly to multiple sequence alignment we could have

“insertion” or “deletions” of nucleosomes/features at specific time points.

4.0.1 Problem definition

We define a genomic-feature map as a set of genomic features Q = {f1, . . . , fn},

where each feature f ∈ Q is a vector f = (µ(f), a
(f)
1 , . . . , a

(f)
l) with l + 1 components,

where µ(f) is the genomic coordinate of that feature in the genome (i.e., chromosome

number and position in the chromosome) and each a
(i)
j , j = 1..l is an attribute of that

feature (e.g., confidence score of a nucleosome, level of DNA methylation, strenght of

trascription factor binding, “fuzziness” of a nucleosome, etc.).

Given two genomic-feature maps Q1 and Q2, the goal is to align them. Specifi-

cally, each feature i ∈ Q1 will be either matched to a feature j ∈ Q2 so that we minimize

the cost ∆(i, j) (e.g., the distance |µ(i) − µ(j)|) or we will report that feature i ∈ Q1

has no match in Q2 (insertion/deletion). In this latter case we will say that j is a gap

54

and denote it as $. In the general case where we need to align k > 2 maps, the cost

function will take form ∆(q1, q2, . . . , qk). Figure 4.1 shows a simple example where we

are supposed to align four maps: circles represent features to align; dashed circle mark

the gap; matched features are connected with solid lines.

In order to define the problem more precisely, we need first to set some con-

straints.

Assumption 1 The order of aligned features should be preserved across different maps.

Formally: if we have order µ
(ψ)
1 < µ

(ψ)
2 < · · · < µ

(ψ)
k of locations on map ψ, then we

should have the same order for matching features µ
(φ)
1 < µ

(φ)
2 < · · · < µ

(φ)
k in another

map φ.

4.1 Previous work

Despite the fact that the map alignment problem should arise in several ap-

plications of genomics and epigenetics, we could not find any available/published tools

aimed to solve it. We speculate that when faced with this problem, computational biol-

ogists use a variation of what we call the “naive approach”, which uses a sliding window

and a greedy strategy. We will discuss the naive method in the following subsection. We

should also mention that there exists a set of algorithms that aim to align microscopic

images of cell samples with the goal to track how those cells move and divide (see, e.g.,

[59, 25, 58]). In our application, however, we are interested in only one-to-one matchings

(i.e., no cell-division). Moreover these methods usually do not handle multiple maps,

but focus on two successive snapshots.

The problem of aligning genomic features from multiple maps is similar to the

well-known problem of Multiple-Sequence Alignment (MSA) (see, e.g., [17]). MSA is a

55

central problem in bioinformatics: it has a wide range of application, from phylogenetic

tree reconstruction, similarity between transcription factor binding sites, discovery of

protein domains, etc. (see, e.g., [63, 57, 39, 47]). A very large corpus of literature

has been published on MSA and its applications. The majority of efficient methods

employ sophisticated heuristics, since the global optimization problem of aligning long

sequences is computationally costly (the problem is NP -complete). Heuristic methods

include progressive alignment construction [27, 73, 72, 41], iterative methods, hidden

Markov models, genetic algorithms [52, 51], simulated annealing [38, 30], etc.

A direct solution for MSA uses the dynamic programming to identify the

globally optimal alignment. The input to MSA is two or more DNA sequenced to be

aligned, a gap penalty score δ, and a substitution matrix which assigns the cost of

aligning each possible pair of symbols in the alphabet. For k individual sequences, the

dynamic programming algorithm requires one to construct a k-dimensional dynamic

programming matrix that stores the cost of optimally aligning any prefix (or suffix) of

the k sequences. The running time for aligning k sequences of size n is Θ(nk) and the

required space is Θ(nk) (space can be reduced using divide-and-conquer). As said, if

one wants to find the global optimum, the problem has been shown to be NP -complete

[18, 76, 34]. To speed up the algorithm different bounding techniques could be used

(see e.g., [16, 43, 7]). There is an obvious equivalence between the genomic-feature

map alignment problem and MSA: the major difference is that instead of a substitution

matrix, we use a cost function ∆(·). However, due to possible long gaps in the alignment,

several of the proposed heuristics to speed up the execution of MSA cannot be used for

our problem.

The problem of aligning genomic feature can be also represented as multi-

target tracking problem or data association problem. These problems have been known

56

for decades and are extensively studied. These problems arise when there is a need to

track features on video sequences, radar scans, etc. The main computational challenge is

to overcome scalability when dealing with a large number of snapshots and a relatively

small number of objects to track. In our case, we are interested in dealing with a

relatively small number of maps but a large number of targets (features). As a result,

we initially designed an algorithmic solution from the ground up by representing multi-

target tracking problem as a k-partite matching problem.

In this Chapter we propose an efficient tool to solve the problem of aligning

multiple genomic-feature maps. We will focus on solving the k-partite matching problem,

which is known to be NP -complete for k > 2. We provide two algorithms: the first builds

iterative approximations of the optimal alignment, the second computes the solution via

integer linear programming [8]. To make the second approach feasible to real-world-sized

data we applied branch-and-bound technique to reduce the size of the problem. Then

we relax the problem to a linear program, which we solve using the off-the-shelf solver

GLPK [44].

4.2 Methods

4.2.1 Naive Greedy approach

We first describe the naive (greedy) approach, and its variations thereof. As

said, we believe that this is the most commonly used approach, and we will use it as the

baseline for our performance evaluations.

In the naive algorithm, for each feature at location i in the first map we try

to find the closest match on the other maps such that all matching candidates are

located within a window of predefined length w, centered at i. If for some map there

57

Input: {Q1, Q2, . . . , Qk} - a set of l genomic feature maps to align, w -
size of the window

Output: R - a set of alignments, where each alignment is an l-tuple
such that each i-th element (i = 1..k) of a tuple is a feature
either belonging to i-th genomic map or is a gap (marked as
$). Each genomic feature from j-th map is present exactly
once and only at j-th position of the alignment tuple

R← ∅;
for i = {1..k} do

for ∀f ∈ Qi do
r = ($1, . . . , $i−1, f, ·, . . . , ·) - is resulting tuple of size k
for j = (i+ 1)..k do

Ψ← set of features ψ s.t. ψ ∈ Qj ∧ |µψ − µf | ≤ w
if Ψ = ∅ then

rj ← $
else

ψmin ← argminz∈ψ∆(f, z)
rj ← ψmin
Qj ← Qj \ {ψmin}

end

end
R← R ∪ r

end

end

Figure 4.2: The naive (greedy) approach for aligning genome feature maps

are no candidate features in the window, we introduce a gap. If a feature is matched in

constructing an alignment, the algorithm marks it as “used” (so that it is not assigned

to other alignments). After we process the first map, we move to the next map: we

check whether any feature were not marked “used”; if any is still unmatched the same

sliding window approach is employed. We repeat the method until all the features are

marked as used. A detailed pseudo-code is shown in Figure 4.2.1.

The naive algorithm is quite fast (running time is Θ(n2)), but it does not

guarantee to produce an optimal solution. First, it relies on the assumption that the

alignment score of three or more features is decomposable into the combination of pair-

wise alignments. Secondly, the algorithm is very sensitive to the choice of window size

58

w. On Figure 4.3 we provide an example of what could happen if the “wrong” window

size is used. In the example, we align four feature maps: circles represent a feature to

align (solid circle - feature is present, dashed circle - feature is missing and not part of

the input), black lines represent true matchings that we are expected to recover. Let

consider one step of the naive algorithm: when it considers the “red” feature, it will

try to match it with features marked with thick-line circles. The resulting alignment is

shown in green: observe that this alignment is sub-optimal.

w

Figure 4.3: An illustration of the naive (greedy) method creating a sub-optimal align-
ment

4.2.2 ThIEF:Iterative algorithm

In this subsection we present our first efficient algorithm, called ThIEF:Iterative.

As the name suggests, it is an iterative algorithm, which constructs alignments by pro-

cessing input maps pairwise. The algorithm starts by aligning the first two maps by

solving the weighted bipartite matching problem. Then, the algorithm aligns the result-

ing alignment between the first two maps with the third map. At each iteration the

algorithm solves a bipartite matching problem between the current alignment and the

59

next feature map.

Each node is assigned a genomic location. When a genomic feature f is mapped

to a node vf ∈ V , then location of vf is µf . Since the algorithm needs to align alignment

to maps, we need to extend the notion of “location” to alignments: in this case, we simply

average the coordinates of the features that belong to an alignment. In this way, nodes

corresponding to partial alignments will have location attribute and a cost function can

be evaluated. The weight for an edge (w, v) is computed as the distance between nodes

c(w,v) = ∆(µw, µv).

The bipartite graph has to have an equal number of vertices in each partition,

so for every vertex in one partition we introduce a “dummy” vertex in the other one. The

resulting bipartite graph allow us to reduce the matching problem to n−to−n assignment

problem. The presence of dummy nodes also naturally incorporates gap resolution: when

a feature is matched against a dummy node we are implicitly introducing a gap. The

cost of edges connecting “dummy” node to features is the gap penalty δ, and edges

“dummy”-“dummy” are not allowed. To solve the n − to − n assignment problem

we use the Hungarian algorithm [32] , which has Θ(n3) time complexity. Details on

ThIEF:Iterative algorithm are shown on Figure 4.4.

The total running time of this approach is Θ(km3), where k is the number

of maps and m is an upper bound on the number of alignments. In the worst case, if

we aligning maps such that features on each map are aligned with corresponding gaps

then we could have m ∈ O(2k−1n). In practice, however, we have m ∈ O(n). The

other disadvantage of this approach is that it does not guarantee optimality, unless cost

function ∆ is decomposable into sum of pairwise costs. The order in which maps are

processed can give rise to different (sub-optimal) solutions.

60

Input: {Q1, Q2, . . . , Qk} - a set of k genomic feature maps to align, δ -
penalty for missing feature

Output: R - a set of alignments, where each alignment is an l-tuple
such that each i-th element (i = 1..k) of a tuple is a feature
either belonging to i-th genomic map or is a gap (marked as
$). Each genomic feature from j-th map is present exactly
once and only at j-th position of the alignment tuple

R← ∅
for ∀f ∈ Q1 do

r ← (f, ·, . . . , ·) - tuple of size k
R← R ∪ r

end
for ∀j ∈ {2, . . . , k} do

Solving m-to-n assignment problem
X ← ∅ ∧ Y ← ∅
for ∀r ∈ R do

X ← X ∪ {average location of r}
Y ← Y ∪ {$}

end
for ∀f ∈ Qj do

Y ← Y ∪ {µf}
X ← X ∪ {$}

end
M ←Hungarian Algorithm(X,Y), with matching costs
∆($, ·) = ∆(·, $) = δ, ∆($, $) =∞, otherwise ∆(x, y) = |x− y|;
for m = (a, b) ∈M do

if a 6= $ then
corresponding to a track r ← (r1, . . . , rj , b, ·, . . . , ·)

else

R← R ∪ ([$](j), b, ·, . . . , ·)
end

end

end
return R

Figure 4.4: Sketch of ThIEF:Iterative

4.2.3 ThIEF:LP Linear Programing Solution

Next, we implemented an optimal algorithm called ThIEF:LP, which casts

the alignment problem as k-partite matching problem. Our problem is slightly more

general than the k-partite matching problem because we need to deal with gaps.

First we build a hyper-graph H = (V,E), where each vertex v ∈ V represent

a genomic feature, and a hyper-edge e ∈ E connects a subset of vertices (i.e., e ⊆ V)

61

representing a possible alignment. By construction, the graph is k-partite: each hyper-

edge contains at most one vertex from a partition (map). Allowing hyper-edges to “skip”

partitions allows us to model gaps in the alignment.

We build the graph H iteratively: we start from the vertices in the first

map/partition, then we add the nodes new partition and “refine” the set of possible

hyper-edges. To do so, for every hyper-edge e ∈ E we consider its extension using ver-

tices in new partitions: if the extension using vertex v is feasible (see next paragraph)

then we add the extended hyper-edge e∗ = e∪{v} to E. In addition we add new hyper-

edge enew = {v}. Observe that when adding a feature map the number of vertexes grows

linearly, but the number of possible hyper-edges grows exponentially.

To limit the size of the graph H we use the following heuristics. First, we do

not generate any “crossing” hyper-edges (i.e., that hyper-edges that violate assumption

(1) above). Second, we filter out hyper-edges that connect features that are located

further than 2δ. Otherwise, such hyper-edge could be split into two hyper-edges with

smaller total cost.

The outline of ThIEF:LP is shown on Figure 4.5.

4.3 Experimental Results

To generate synthetic feature maps we proceeded as follow. Each dataset

depends on five parameters, namely (1) the number k of feature maps, (2) the number n

of features, (3) the minimum distance d between features, (4) the probability p of a gap,

and (5) the movement σ. The algorithm generates an initial map Q where the features

are placed at random locations so that the average distance between adjacent features

is uniformly distributed in [d, 2d].

62

Data: {Q1, Q2, . . . , Qk} - a set of k genomic feature maps to align, δ -
penalty for missing feature

Result: R - a set of hyperedges, where each edges is an l-tuple such that
each i-th element (i = 1, . . . , k) of a tuple is a feature either
belonging to i-th genomic map or is a gap (marked as $). Each
genomic feature from j-th map is present exactly once and only
at j-th position of the alignment tuple.

E1 ← ∅
V ← ∪f∈{Q1,...,Ql}f

for ∀f ∈ Q1 do
E1 ← E1 ∪ (f, ·, . . . , ·)

end
for ∀j = 2, . . . , l do

Ej ← ∅
for ∀f ∈ Qj do

Ej ← Ej ∪ ([$](j−1), f, ·, . . . , ·)
for ∀e ∈ Ej−1 s.t. distance(e, f) ≤ 2δ do

ej ← f
Ej ← Ej ∪ {e}

end

end

end
E ← El
for e ∈ E do

ecost ← ∆((e1, . . . , el))
end
Create LP for the problem of finding minimum weight hyperedge cover
for H = (V,E)
Solve LP using GLPK
R← resulting set of hyperedges

Figure 4.5: Sketch of ThIEF:LP algorithm

From the initial map Q we generated k maps as follows. For each map we

take a feature f ∈ Q and we shift its location a random quantity drawn from Gaussian

distribution with parameters (0, σ). By keeping track of which feature moved where

during these step we can establish the “ground-truth” alignment set. The final step is

to scan all the features and, with probability p, replace them with a gap.

Observe that this procedure can produce alignments that do not satisfy the

assumptions from Section 4.1.1, in particular, trajectories of alignments could cross.

63

100

0

10

20

30

40

50

60

70

80

90

Se
ns

iti
vi

ty
, %

Movement variation

ThIEF:LP

ThIEF:Iterative

Naive (greedy)

15 25 35 45 55 65

Figure 4.6: Percentage of true alignments recovered for several choices of movement
parameter σ

4.3.1 Performance Analysis

We analyzed the performance of ThIEF:LP and ThIEF:Iterative against

the naive (greedy) approach on synthetic datasets. We generated a large number of

datasets consisting of k = 3 maps and n = 1000 features, using different values for

minimum distance d between features, gap probability p and movement variation σ.

We compared the alignments produced by these tools against the “ground-

truth” and measured the percentage of recovered alignments (sensitivity) and the pro-

portion of recovered alignments in the output (specificity). Figure 4.6 shows the average

sensitivity as a function of the movement parameter σ. Observe that ThIEF:LP out-

performs the other approaches, as we would expect given that ThIEF:LP is guaranteed

to generate optimal solutions. ThIEF:Iterative has slightly worse performance but

still better then naive approach. Also observe that as σ increases, the performance

decreases: this could be explained by the fact that with more variation in the location

64

0

10

20

30

40

50

60

70

80

90

15 25 35 45 55 65

Sp
ec

ifi
ci

ty
, %

Movement variation

ThIEF:LP

ThIEF:Iterative

Naive (greedy)

Figure 4.7: Percentage of true positive alignments in the output recovered for several
choices of movement parameter σ

of the features it becomes more likely to have crossing of alignment trajectories, which

none of the tools was designed to capture. Specificity analysis shows a similar behav-

ior (see Figure 4.7). Here ThIEF:LP and ThIEF:Iterative have almost identical

performance, which is significantly better than the naive.

4.3.2 Execution Time

To study the speed of the three algorithms we measured the cumulative exe-

cution time on a variety of input datasets.

First, let’s consider ThIEF:Iterative. The theoretical running time is Θ(km3),

where k is the number of maps and m is an upper bound on the total number of align-

ments. The functional dependency between m and n is data-dependent, specifically

how many new alignments are introduced at every iteration (instead of extending ex-

isting ones). The worst case is m ∈ O(2k−1n). As a result, the total worst-case time-

complexity could be as bad as O(2kn3). Figure 4.8 shows the experimental dependency

65

between the execution time of ThIEF:Iterative and the number of maps k. Observe

that since the Y axis is log-scale, these experiments confirm that the actual running

time is exponential. Figure 4.9 shows the dependency between the execution time of

ThIEF:Iterative and the number of features n, for k = 5 and k = 6 maps. The solid

lines are cubic functions of n fitted to the data. These experiments confirm the cubic

dependency on number of features of the maps in the input.

Next, we consider ThIEF:LP. The running time is dominated by the cost of

solving a linear program, which in the case of the simplex algorithm, has exponential

worst-case running time (although in practice, for the large majority of the instances

the time-complexity of simplex is polynomial). The size of the linear program depends

on the size of the hyper-graph: in our implementation, the size of the graph can be

exponential in k, that is O(nak), where a > 1 is a constant. Figure 4.10 shows the

dependency between execution time and the number of maps k. Each curve shows a

linear trend (note that Y axis is in log-scale). The different shape of the blue curve

(twenty features per map) could be explained by the fact that with small inputs the

I/O overhead of transferring the data to the GLPK solver dominates the execution

time. When we consider the blue curve for at least five maps the size of the hyper-graph

becomes big enough so that solving the linear program dominate the execution time.

These experiments support the claim of exponential complexity on the number of maps.

Figure 4.11 shows a linear dependency between the execution time and the number of

features to track, as expected from the theoretical analysis.

Since ThIEF:LP was implemented in Python and ThIEF:Iterative in C++,

comparing their execution time is not very meaningful.

66

1

10

100

1000

2 3 4 5 6 7

Ex
ec

uti
on

 ti
m

e,
 se

c

Number of maps to align

20

100

200

300

400

Figure 4.8: Dependency between execution time of ThIEF:Iterative and the number
of maps to align, for different choices of the number of features.

4.4 Conclusion

In this Chapter we described the general problem of comparing multiple genome-

wide “genomic-feature” maps in a framework similar to multiple sequence alignment. We

implemented two novel tools to perform this task, called ThIEF:LP and ThIEF:Iterative.

ThIEF:LP finds a global optimal solution by constructing a hyper-graph representing

the problem and solves it via linear programming. ThIEF:Iterative reconstructs the

final alignments by computing pair-wise alignments using the Hungarian algorithm: as a

consequence solution the solution is not guaranteed to be optimal. We determined that

ThIEF:LP has slightly better sensitivity than ThIEF:Iterative, however the latter

approach is more suitable for aligning a large number of maps. Both tools perform

significantly better than naive (greedy) approach.

67

0

200

400

600

100 200 300 400

Ex
ec

uti
on

 ti
m

e,
 se

c

Number of features per map to align

5 maps

maps6

Figure 4.9: Dependency between execution time of ThIEF:Iterative and the number
of features, for 5 and 6 maps

1

10

100

1000

10000

100000

Ex
ec

uti
on

 ti
m

e,
 se

c

Number of maps to align

20

100

200

300

400

2 3 4 5 6 7

Figure 4.10: Dependency between execution time of ThIEF:LP and the number of
maps to align, for different choices of number of features.

68

0

40000

80000

100000

120000

Ex
ec

uti
on

 ti
m

e,
 se

c

Number of features per map to align

5 maps

6 maps

7 maps

100 200 300 400

Figure 4.11: Dependency between execution time of ThIEF:LP and the number of
features, for 5 and 6 maps

69

Chapter 5

Conclusions

In this dissertation, we addressed some of the computational issues associated

with the analysis of sequencing data enriched for nucleosomes. We proposed two novel

algorithms to detect nucleosomes, for single- (NOrMAL) and paired-end (PuFFIN)

sequencing data respectively. Then we examined the problem of aligning genomic fea-

ture maps. As a result we devised a novel framework THiEF that encompasses two

algorithms THiEF:Iteration and THiEF:LP.

5.1 Publications

This dissertation includes two publications and one unpublished manuscript.

The findings on NOrMAL was presented at ISMB 2012, Long Beach, CA and pub-

lished in Bioinformatics. The work on PuFFIN was presented at RECOMB-SEQ 2014,

Pittsburg, PA and will be published in BMC Bioinformatics.

Full list of publications by A. Polishko:

• “PuFFIN - A Parameter-free Method to Build Nucleosome Maps from Paired-

end Reads” by A. Polishko, E. M. Bunnik, K. Le Roch and S. Lonardi, BMC

70

Bioinormatics (in press), 2014.

• “DNA-encoded nucleosome occupancy regulates transcriptional levels in the hu-

man malaria parasite Plasmodium falciparum”, by E. Bunnik, A. Polishko, J.

Prudhomme, N. Ponts, S. S. Gill, S. Lonardi and K. G. Le Roch, BMC Genomics,

15(1):347, 2014.

• “Mechanisms of small RNA generation from cis-NATs in response to environmental

and developmental cues”, by X. Zhang, Y. Lii, Z. Wu, A. Polishko, H. Zhang,

V. Chinnusamy, S. Lonardi, J.-K. Zhu, R. Liu and H. Jin, Molecular Plant, 6(3):

704-715, 2013.

• “NOrMAL: accurate nucleosome positioning using a modified Gaussian mixture

model.” A. Polishko, N. Ponts, K. G. Le Roch, S. Lonardi. ISMB 2012 - Pro-

ceedings of Annual International Conference on Intelligent Systems for Molecular

Biology, i242-i249, Long Beach, CA, 2012. Special Issue of Bioinformatics, 28(12):

i242-i249, 2012. Presentation at ISMB 2012. Poster at WABI 2012.

• “ThIEF: a novel tool for TrackIng gEnomic Features”, by A. Polishko, E. Bunnik,

K. G. Le Roch, and S. Lonardi. (manuscript in preparation)

71

Bibliography

[1] Istvan Albert, Travis N Mavrich, Lynn P Tomsho, Ji Qi, Sara J Zanton, Stephan C
Schuster, and B. Franklin Pugh. Translational and rotational settings of H2A.Z
nucleosomes across the Saccharomyces cerevisiae genome. Nature, 446(7135):572–
576, Mar 2007.

[2] James Allan, Ross M. Fraser, Tom Owen-Hughes, and David Keszenman-Pereyra.
Micrococcal nuclease does not substantially bias nucleosome mapping. Journal of
Molecular Biology, 417(3):152–64, January 2012.

[3] Richárd Bártfai, Wieteke A. Hoeijmakers, Adriana M. Salcedo-Amaya, Arne H.
Smits, Eva Janssen-Megens, Anita Kaan, Moritz Treeck, Tim-Wolf W. Gilberger,
Kees-Jan J. Françoijs, and Hendrik G. Stunnenberg. H2A.Z demarcates intergenic
regions of the plasmodium falciparum epigenome that are dynamically marked by
H3K9ac and H3K4me3. PLoS pathogens, 6(12), 2010.

[4] Jeremie Becker, Christopher Yau, John M. Hancock, and Christopher C. Holmes.
NucleoFinder: a statistical approach for the detection of nucleosome positions.
Bioinformatics, 29(6):711–716, March 2013.

[5] Evelien M Bunnik, Duk-Won Doug Chung, Michael Hamilton, Nadia Ponts, Anita
Saraf, Jacques Prudhomme, Laurence Florens, and Karine G Le Roch. Polysome
profiling reveals translational control of gene expression in the human malaria par-
asite plasmodium falciparum. Genome biology, 14(11):R128, 2013.

[6] Evelien M Bunnik, Anton Polishko, Jacques Prudhomme, Nadia Ponts, Sarjeet S
Gill, Stefano Lonardi, and Karine G Le Roch. Dna-encoded nucleosome occupancy
is associated with transcription levels in the human malaria parasite plasmodium
falciparum. BMC Genomics, 15(1):347, 2014.

[7] H Carrillo and D Lipman. The multiple sequence alignment problem in biology.
SIAM Journal on Applied Mathematics, 48(5):1073–1082, 1988.

[8] Yuk Hei Chan and Lap Chi Lau. On linear and semidefinite programming re-
laxations for hypergraph matching. Mathematical programming, 135(1-2):123–148,
2012.

[9] Kaifu Chen, Yuanxin Xi, Xuewen Pan, Zhaoyu Li, Klaus Kaestner, Jessica Tyler,
Sharon Dent, Xiangwei He, and Wei Li. DANPOS: dynamic analysis of nucleosome
position and occupancy by sequencing. Genome research, 23(2):341–51, February
2013.

72

[10] Ramu Chenna, Hideaki Sugawara, Tadashi Koike, Rodrigo Lopez, Toby Gibson,
Desmond Higgins, and Julie Thompson. Multiple sequence alignment with the
clustal series of programs. Nucleic acids research, 31(13):3497–3500, 2003.

[11] Hyungwon Choi, Alexey Nesvizhskii, Debashis Ghosh, and Zhaohui Qin. Hierarchi-
cal hidden markov model with application to joint analysis of chip-chip and chip-seq
data. Bioinformatics, 25(14):1715–1721, 2009.

[12] H Chui. A new point matching algorithm for non-rigid registration. Computer
Vision and Image Understanding, 89(2-3):114–141, 2003.

[13] Hope A Cole, Bruce H Howard, and David J Clark. The centromeric nucleosome of
budding yeast is perfectly positioned and covers the entire centromere. Proceedings
of the National Academy of Sciences, 108(31):12687–12692, 2011.

[14] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for
mobile robots. In Proceedings 1999 IEEE International Conference on Robotics
and Automation (Cat. No.99CH36288C), volume 2, pages 1322–1328. Ieee, 1999.

[15] Hugh Durrant-whyte and Tim Bailey. Simultaneous Localisation and Mapping (
SLAM): Part I The Essential Algorithms. History, pages 1–9, 2006.

[16] Robert Edgar. Muscle: a multiple sequence alignment method with reduced time
and space complexity. BMC bioinformatics, 5(1):113, 2004.

[17] Robert C Edgar. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic acids research, 32(5):1792–7, January 2004.

[18] Isaac Elias. Settling the intractability of multiple alignment. Journal of Computa-
tional Biology, 13(7):1323–1339, 2006.

[19] Yair Field, Yvonne Fondufe-Mittendorf, Irene Moore, Piotr Mieczkowski, Noam
Kaplan, Yaniv Lubling, Jason Lieb, Jonathan Widom, and Eran Segal. Gene ex-
pression divergence in yeast is coupled to evolution of dna-encoded nucleosome
organization. Nat Genet, 41(4):438–445, 2009.

[20] Yair Field, Noam Kaplan, Yvonne Fondufe-Mittendorf, Irene K Moore, Eilon
Sharon, Yaniv Lubling, Jonathan Widom, Eran Segal, and Uwe Ohler. Distinct
modes of regulation by chromatin encoded through nucleosome positioning signals.
PLoS Computational Biology, 4(11):e1000216, Nov 2008.

[21] Oscar Flores and Modesto Orozco. nucleR: a package for non-parametric nucleo-
some positioning. Bioinformatics (Oxford, England), 27(15):2149–50, August 2011.

[22] Kai Fu, Qianzi Tang, Jianxing Feng, X Shirley Liu, and Yong Zhang. DiNuP: A
Systematic Approach to Identify Regions of Differential Nucleosome Positioning.
Bioinformatics (Oxford, England), 28(15):1965–1971, June 2012.

[23] Paul Giresi, Jonghwan Kim, Ryan McDaniell, Vishwanath Iyer, and Jason Lieb.
Faire (formaldehyde-assisted isolation of regulatory elements) isolates active regu-
latory elements from human chromatin. Genome research, 17(6):877–885, 2007.

[24] Paul Giresi and Jason Lieb. Isolation of active regulatory elements from eukary-
otic chromatin using faire (formaldehyde assisted isolation of regulatory elements).
Methods (San Diego, Calif.), 48(3):233–239, 2009.

73

[25] Steven Gold, Anand Rangarajan, et al. Softmax to softassign: Neural network
algorithms for combinatorial optimization. Journal of Artificial Neural Networks,
2(4):381–399, 1996.

[26] Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjol-
sness. New algorithms for 2d and 3d point matchingpose estimation and correspon-
dence. Pattern Recognition, 31(8):1019–1031, 1998.

[27] Desmond Higgins and Paul Sharp. Clustal: a package for performing multiple
sequence alignment on a microcomputer. Gene, 73(1):237–244, 1988.

[28] DG Higgins, JD Thompson, and TJ Gibson. Using clustal for multiple sequence
alignments. Methods in enzymology, 266:383–402, 1996.

[29] Peter Humburg, Chris Helliwell, David Bulger, and Glenn Stone. Chipseqr: analysis
of chip-seq experiments. BMC Bioinformatics, 12(1):39, 2011.

[30] Masato Ishikawa, Tomoyuki Toya, Masaki Hoshida, Katsumi Nitta, Atushi Ogi-
wara, and Minoru Kanehisa. Multiple sequence alignment by parallel simulated
annealing. Comput. Appl. Biosci., 9(3):267–273, 1993.

[31] Hongkai Ji, Hui Jiang, Wenxiu Ma, David Johnson, Richard Myers, and Wing
Wong. An integrated software system for analyzing chip-chip and chip-seq data.
Nature Biotechnology, 26(11):1293–1300, 2008.

[32] Roy Jonker and Ton Volgenant. Improving the hungarian assignment algorithm.
Operations Research Letters, 5(4):171–175, 1986.

[33] Raja Jothi, Suresh Cuddapah, Artem Barski, Kairong Cui, and Keji Zhao. Genome-
wide identification of in vivo protein–dna binding sites from chip-seq data. Nucleic
Acids Research, 36(16):5221–5231, 2008.

[34] W Just. Computational complexity of multiple sequence alignment with sp-score.
Journal of computational biology : a journal of computational molecular cell biology,
8(6):615–623, 2001.

[35] Noam Kaplan, Irene Moore, Yvonne Fondufe-Mittendorf, Andrea Gossett, Desiree
Tillo, Yair Field, Emily LeProust, Timothy Hughes, Jason Lieb, Jonathan Widom,
and Eran Segal. The dna-encoded nucleosome organization of a eukaryotic genome.
Nature, 458(7236):362–366, 2009.

[36] Rosa Karlić, Ho-Ryun Chung, Julia Lasserre, Kristian Vlahoviček, and Martin
Vingron. Histone modification levels are predictive for gene expression. Proceedings
of the National Academy of Sciences, 107(7):2926–2931, 2010.

[37] Peter Kharchenko, Michael Tolstorukov, and Peter Park. Design and analysis
of chip-seq experiments for dna-binding proteins. Nat Biotech, 26(12):1351–1359,
2008.

[38] Jin Kim, Sakti Pramanik, and Moon Chung. Multiple sequence alignment using
simulated annealing. Comput. Appl. Biosci., 10(4):419–426, 1994.

[39] Ekaterina Kotelnikova, Vsevolod Makeev, and Mikhail Gelfand. Evolution of tran-
scription factor dna binding sites. Gene, 347(2):255–263, 2005.

74

[40] Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with Bowtie
2. Nat Meth, 9(4):357–359, April 2012.

[41] MA Larkin, G Blackshields, NP Brown, R Chenna, PA McGettigan, H McWilliam,
F Valentin, IM Wallace, A Wilm, R Lopez, JD Thompson, TJ Gibson, and DG Hig-
gins. Clustal w and clustal x version 2.0. Bioinformatics, 23(21):2947–2948, 2007.

[42] Cheol-Koo Lee, Yoichiro Shibata, Bhargavi Rao, Brian D Strahl, and Jason D
Lieb. Evidence for nucleosome depletion at active regulatory regions genome-wide.
Nature genetics, 36(8):900–905, 2004.

[43] DJ Lipman, SF Altschul, and JD Kececioglu. A tool for multiple sequence align-
ment. Proceedings of the National Academy of Sciences, 86(12):4412–4415, 1989.

[44] Andrew Makhorin. Glpk (gnu linear programming kit), 2008.

[45] T. N Mavrich, I. P Ioshikhes, B. J Venters, C Jiang, L. P Tomsho, J Qi, S. C Schus-
ter, I Albert, and B. F Pugh. A barrier nucleosome model for statistical positioning
of nucleosomes throughout the yeast genome. Genome Research, 18(7):1073–1083,
Jul 2008.

[46] Travis N Mavrich, Cizhong Jiang, Ilya P Ioshikhes, Xiaoyong Li, Bryan J Venters,
Sara J Zanton, Lynn P Tomsho, Ji Qi, Robert L Glaser, Stephan C Schuster,
David S Gilmour, Istvan Albert, and B. Franklin Pugh. Nucleosome organization
in the drosophila genome. Nature, 453(7193):358–362, May 2008.

[47] Alan Moses, Derek Chiang, Daniel Pollard, Venky Iyer, and Michael Eisen. Monkey:
identifying conserved transcription-factor binding sites in multiple alignments using
a binding site-specific evolutionary model. Genome biology, 5(12):R98, 2004.

[48] Felix Mueller-Planitz, Henrike Klinker, and Peter B Becker. Nucleosome sliding
mechanisms: new twists in a looped history. Nature structural & molecular biology,
20(9):1026–32, September 2013.

[49] Nishanth Ulhas Nair, Avinash Das Sahu, Philipp Bucher, and Bernard M. E. Moret.
Chipnorm: A statistical method for normalizing and identifying differential regions
in histone modification chip-seq libraries. PLoS ONE, 7(8):e39573, 08 2012.

[50] Abhinav Nellore, Konstantin Bobkov, Elizabeth Howe, Aleksandr Pankov, Aaron
Diaz, and Jun S Song. NSeq: a multithreaded Java application for finding positioned
nucleosomes from sequencing data. Frontiers in genetics, 3(January):320, January
2012.

[51] C Notredame and DG Higgins. Saga: Sequence alignment by genetic algorithm.
Nucleic Acids Res., 24(8):1515–1524, 1996.

[52] C Notredame, EA O’Brien, and DG Higgins. Raga: Rna sequence alignment by
genetic algorithm. Nucleic acids research, 25(22):4570–4580, 1997.

[53] E. Parzen. On estimation of a probability density function and mode. Annals of
mathematical statistics, 33:1065–1076, 1962.

[54] Anton Polishko, Nadia Ponts, Karine G Le Roch, and Stefano Lonardi. NOR-
MAL: accurate nucleosome positioning using a modified Gaussian mixture model.
Bioinformatics (Oxford, England), 28(12):i242–9, June 2012.

75

[55] Nadia Ponts, Elena Y. Harris, Stefano Lonardi, and Karine G. Le Roch. Nucleosome
occupancy at transcription start sites in the human malaria parasite: A hard-wired
evolution of virulence? Infection, Genetics and Evolution, 11(4):716–724, 2010.

[56] Nadia Ponts, Elena Y Harris, Jacques Prudhomme, Ivan Wick, Colleen Eckhardt-
Ludka, Glenn R Hicks, Gary Hardiman, Stefano Lonardi, and Karine G Le Roch.
Nucleosome landscape and control of transcription in the human malaria parasite.
Genome research, 20(2):228–38, February 2010.

[57] Rainer Pudimat, Ernst-GÃnter Schukat-Talamazzini, and Rolf Backofen. A
multiple-feature framework for modelling and predicting transcription factor bind-
ing sites. Bioinformatics, 21(14):3082–3088, 2005.

[58] Anand Rangarajan, Haili Chui, and Fred L Bookstein. The softassign procrustes
matching algorithm. In Information Processing in Medical Imaging, pages 29–42.
Springer, 1997.

[59] Anand Rangarajan, Alan Yuille, and Eric Mjolsness. Convergence properties of the
softassign quadratic assignment algorithm. Neural Computation, 11(6):1455–1474,
1999.

[60] T Rausch, AK Emde, D Weese, A Döring, C Notredame, and K Reinert. Segment-
based multiple sequence alignment. Bioinformatics (Oxford, England), 24(16),
2008.

[61] Karine G Le Roch, Yingyao Zhou, Peter L Blair, Muni Grainger, J Kathleen Moch,
J David Haynes, Patricia De La Vega, Anthony A Holder, Serge Batalov, Daniel J
Carucci, and Elizabeth A Winzeler. Discovery of gene function by expression pro-
filing of the malaria parasite life cycle. Science, 301(5639):1503–8, Sep 2003.

[62] Morten Beck Rye, P̊al Sætrom, and Finn Drabløs. A manually curated chip-seq
benchmark demonstrates room for improvement in current peak-finder programs.
Nucleic acids research, 39(4):e25–e25, 2011.

[63] Rafik A Salama and Dov J Stekel. A non-independent energy-based multiple se-
quence alignment improves prediction of transcription factor binding sites. Bioin-
formatics, 29(21):2699–2704, 2013.

[64] Shin Sasaki, Cecilia C. Mello, Atsuko Shimada, Yoichiro Nakatani, Shin-Ichi
Hashimoto, Masako Ogawa, Kouji Matsushima, Sam Guoping G. Gu, Masahiro
Kasahara, Budrul Ahsan, Atsushi Sasaki, Taro Saito, Yutaka Suzuki, Sumio
Sugano, Yuji Kohara, Hiroyuki Takeda, Andrew Fire, and Shinichi Morishita.
Chromatin-associated periodicity in genetic variation downstream of transcriptional
start sites. Science (New York, N.Y.), 323(5912):401–404, January 2009.

[65] Dustin E Schones, Kairong Cui, Suresh Cuddapah, Tae-Young Roh, Artem Barski,
Zhibin Wang, Gang Wei, and Keji Zhao. Dynamic regulation of nucleosome posi-
tioning in the human genome. Cell, 132(5):887–898, 2008.

[66] Robert Schopflin, Vladimir B. Teif, Oliver Muller, Christin Weinberg, Karsten
Rippe, and Gero Wedemann. Modeling nucleosome position distributions from ex-
perimental nucleosome positioning maps. Bioinformatics, 29(19):2380–2386, 2013.

76

[67] Eran Segal, Yvonne Fondufe-Mittendorf, Lingyi Chen, AnnChristine Th̊aström,
Yair Field, Irene K Moore, Ji-Ping Z Wang, and Jonathan Widom. A genomic
code for nucleosome positioning. Nature, 442(7104):772–778, 2006.

[68] Li Shen, Ning-Yi Shao, Xiaochuan Liu, Ian Maze, Jian Feng, and Eric Nestler.
diffreps: detecting differential chromatin modification sites from chip-seq data with
biological replicates. PloS one, 8(6):e65598, 2013.

[69] Sushma Shivaswamy, Akshay Bhinge, Yongjun Zhao, Steven Jones, Martin Hirst,
and Vishwanath R Iyer. Dynamic remodeling of individual nucleosomes across a
eukaryotic genome in response to transcriptional perturbation. Plos Biol, 6(3):e65,
Jan 2008.

[70] CA) Shozo Mori (Raytheon Systems Company Advanced CI Systems, San Jose.
Multi-Target Tracking Theory in Random Set Formalism. 1998.

[71] Fabian Sievers, Andreas Wilm, David Dineen, Toby Gibson, Kevin Karplus,
Weizhong Li, Rodrigo Lopez, Hamish McWilliam, Michael Remmert, Johannes
Soding, Julie Thompson, and Desmond Higgins. Fast, scalable generation of high-
quality protein multiple sequence alignments using clustal omega. Molecular Sys-
tems Biology, 7(1), 2011.

[72] Julie Thompson, Toby Gibson, and Des Higgins. Multiple sequence alignment using
clustalw and clustalx. Current protocols in bioinformatics / editoral board, Andreas
D. Baxevanis ... [et al.], Chapter 2, 2002.

[73] Julie Thompson, Desmond Higgins, and Toby Gibson. Clustal w: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22(22):4673–4680, 1994.

[74] Anton Valouev, Jeffrey Ichikawa, Thaisan Tonthat, Jeremy Stuart, Swati Ranade,
Heather Peckham, Kathy Zeng, Joel a Malek, Gina Costa, Kevin McKernan, Arend
Sidow, Andrew Fire, and Steven M Johnson. A high-resolution, nucleosome position
map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome
research, 18(7):1051–63, July 2008.

[75] Anton Valouev, David S Johnson, Andreas Sundquist, Catherine Medina, Elizabeth
Anton, Serafim Batzoglou, Richard M Myers, and Arend Sidow. Genome-wide anal-
ysis of transcription factor binding sites based on chip-seq data. Nature methods,
5(9):829–834, 2008.

[76] L Wang and T Jiang. On the complexity of multiple sequence alignment. Journal of
computational biology : a journal of computational molecular cell biology, 1(4):337–
348, 1994.

[77] Assaf Weiner, Amanda Hughes, Moran Yassour, Oliver J Rando, and Nir Fried-
man. High-resolution nucleosome mapping reveals transcription-dependent pro-
moter packaging. Genome research, 20(1):90–100, January 2010.

[78] Elizabeth G Wilbanks and Marc T Facciotti. Evaluation of algorithm performance
in chip-seq peak detection. PloS one, 5(7):e11471, 2010.

77

[79] Han Xu, Chia-Lin Wei, Feng Lin, and Wing-Kin Sung. An hmm approach to
genome-wide identification of differential histone modification sites from chip-seq
data. Bioinformatics, 24(20):2344–2349, 2008.

[80] Guo-Cheng Yuan and Jun S Liu. Genomic sequence is highly predictive of local
nucleosome depletion. PLoS computational biology, 4(1):e13, 2008.

[81] Guo-Cheng Yuan, Yuen-Jong Liu, Michael F Dion, Michael D Slack, Lani F Wu,
Steven J Altschuler, and Oliver J Rando. Genome-scale identification of nucleosome
positions in s. cerevisiae. Science, 309(5734):626–630, 2005.

[82] Chongzhi Zang, Dustin Schones, Chen Zeng, Kairong Cui, Keji Zhao, and Weiqun
Peng. A clustering approach for identification of enriched domains from histone
modification chip-seq data. Bioinformatics (Oxford, England), 25(15):1952–1958,
2009.

[83] Ken Zaret. Micrococcal nuclease analysis of chromatin structure. Current protocols
in molecular biology, Chapter 21, February 2005.

[84] Xiaoming Zhang, Yifan Lii, Zhigang Wu, Anton Polishko, Huiming Zhang,
Viswanathan Chinnusamy, Stefano Lonardi, Jian-Kang Zhu, Renyi Liu, and Hailing
Jin. Mechanisms of small rna generation from cis-nats in response to environmental
and developmental cues. Molecular plant, 6(3):704–715, 2013.

[85] Xuekui Zhang, Gordon Robertson, Sangsoon Woo, Brad G Hoffman, and Raphael
Gottardo. Probabilistic inference for nucleosome positioning with MNase-based or
sonicated short-read data. PloS one, 7(2):e32095, January 2012.

[86] Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson,
Bradley E Bernstein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li,
et al. Model-based analysis of chip-seq (macs). Genome Biol, 9(9):R137, 2008.

[87] Yong Zhang, Hyunjin Shin, Jun S Song, Ying Lei, and X Shirley Liu. Identifying
positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC
genomics, 9:537, January 2008.

[88] Zhenhai Zhang and B. Franklin Pugh. High-Resolution Genome-wide Mapping of
the Primary Structure of Chromatin. Cell, 144(2):175–186, January 2011.

78

