Skip to main content
Download PDF
- Main
Irradiation Haematopoiesis Recovery Orchestrated by IL-12/IL-12Rβ1/TYK2/STAT3-Initiated Osteogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells
Published Web Location
https://doi.org/10.3389/fcell.2021.729293Abstract
Purpose
Repairing the irradiation-induced osteogenic differentiation injury of bone marrow mesenchymal stem cells (BM-MSCs) is beneficial to recovering haematopoiesis injury in radiotherapy; however, its mechanism is elusive. Our study aimed to help meet the needs of understanding the effects of radiotherapy on BM-MSC osteogenic potential.Methods and materials
Balb/c mice and the BM-MSCs were used to evaluate the irradiation-induced osteogenic differentiation injury in vivo. The cellular and molecular characterization were applied to determine the mechanism for recovery of irradiation-derived haematopoiesis injuries.Results
We report a functional role of IL-12 in acute irradiation hematopoietic injury recovery and intend to dissect the possible mechanisms through BM-MSC, other than the direct effect of IL-12 on hematopoietic stem and progenitor cells (HSPCs). Specifically, we show that early use of IL-12 enhanced the osteogenic differentiation of BM-MSCs through IL-12Rβ1/TYK2/STAT3 signaling; furthermore, IL-12 induced osteogenesis facilitated bone formation and irradiation hematopoiesis recovery when transplanted BM-MSCs in the femur of Balb/c mice. For the mechanism of action, we found that IL-12 receptor beta 1 (IL-12Rβ1) expression of irradiated BM-MSCs was upregulated rapidly, coincidentally consistent with early use of IL-12 induced osteogenic differentiation enhancement. IL-12Rβ1 and tyrosine kinase 2 gene (Tyk2) silencing experiments and phosphotyrosine of signal transducer and activator of transcription 3 (p-STAT3) suppression experiments indicated the IL-12Rβ1/TYK2/STAT3 signaling was essential in IL-12-induced osteogenic differentiation enhancement of BM-MSCs.Conclusion
These findings suggested that IL-12 may exert BM-MSCs-based hematopoietic recovery by repairing osteogenic differentiation abilities damages through IL-12Rβ1/TYK2/STAT3 signaling pathway post-irradiation.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%