- Main
Zintl Phases: From Curiosities to Impactful Materials.
Published Web Location
https://doi.org/10.1021/acs.chemmater.3c01874Abstract
The synthesis of new compounds and crystal structures remains an important research endeavor in pursuing technologically relevant materials. The Zintl concept is a guidepost for the design of new functional solid-state compounds. Zintl phases are named in recognition of Eduard Zintl, a German chemist who first studied a subgroup of intermetallics prepared with electropositive metals combined with main-group metalloids from groups 13-15 in the 1930s. Unlike intermetallic compounds, where metallic bonding is the norm, Zintl phases exhibit a combination of ionic and covalent bonding and are typically semiconductors. Zintl phases provide a palette for iso- and aliovalent substitutions that can each contribute uniquely to the properties. Zintl electron-counting rules can be employed to interrogate a structure type and develop a foundation of structure-property relationships. Employing substitutional chemistry allows for the rational design of new Zintl compounds with technological properties, such as magnetoelectronics, thermoelectricity, and other energy storage and conversion capabilities. Discovering new structure types and compositions through this approach is also possible. The background on the strength and innovation of the Zintl concept and a few highlights of Zintl phases with promising thermoelectric properties in the context of structural and electronic design will be provided.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-