Measuring Type Ia Supernova Distances and Redshifts From Their Multi-band Light Curves
Skip to main content
eScholarship
Open Access Publications from the University of California

Measuring Type Ia Supernova Distances and Redshifts From Their Multi-band Light Curves

  • Author(s): Kim, Alex G.
  • Miquel, Ramon
  • et al.
Abstract

The distance and redshift of a type Ia supernova can be determined simultaneously through its multi-band light curves. This fact may beused for imaging surveys that discover and obtain photometry for large numbers of supernovae; so many that it would be difficult to obtain a spectroscopic redshift for each. Using available supernova-analysis tools we find that there are several conditions in which a viable distance--redshift can be determined. Uncertainties in the effective distance at z~;0.3 are dominated by redshift uncertainties coupled with the steepness of the Hubble law. By z~;0.5 the Hubble law flattens out and distance-modulus uncertainties dominate. Observations that give S/N=50 at peak brightness and a four-day observer cadence in each of griz-bands are necessary to match the intrinsic supernova magnitude dispersion out to z=1.0. Lower S/N can be tolerated with the addition of redshift priors (e.g., from a host-galaxy photometric redshift), observationsin an additional redder band, or by focusing on supernova redshifts that have particular leverage for this measurement. More stringent S/N requirements are anticipated as improved systematics control over intrinsic color, metallicity, and dust is attempted to be drawn from light curves.

Main Content
Current View