Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Diffusion Tensor Imaging for Assessment of Response to Neoadjuvant Chemotherapy in Patients With Breast Cancer

Abstract

In this study, the prognostic significance of tumor metrics derived from diffusion tensor imaging (DTI) was evaluated in patients with locally advanced breast cancer undergoing neoadjuvant therapy. DTI and contrast-enhanced magnetic resonance imaging were acquired at 1.5 T in 34 patients before treatment and after 3 cycles of taxane-based therapy (early treatment). Tumor fractional anisotropy (FA), principal eigenvalues (λ1, λ2, and λ3), and apparent diffusion coefficient (ADC) were estimated for tumor regions of interest drawn on DTI data. The association between DTI metrics and final tumor volume change was evaluated with Spearman rank correlation. DTI metrics were investigated as predictors of pathological complete response (pCR) by calculating the area under the receiver operating characteristic curve (AUC). Early changes in tumor FA and ADC significantly correlated with final tumor volume change post therapy (ρ = -0.38, P = .03 and ρ = -0.71, P < .001, respectively). Pretreatment tumor ADC was significantly lower in the pCR than in the non-pCR group (P = .04). At early treatment, patients with pCR had significantly higher percent changes of tumor λ1, λ2, λ3, and ADC than those without pCR. The AUCs for early percent changes in tumor FA and ADC were 0.60 and 0.83, respectively. The early percent changes in tumor eigenvalues and ADC were the strongest DTI-derived predictors of pCR. Although early percent change in tumor FA had a weak association with pCR, the significant correlation with final tumor volume change suggests that this metric changes with therapy and may merit further evaluation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View