Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A discrete-time survival model with random effects for designing and analyzing repeated low-dose challenge experiments

Abstract

Repeated low-dose (RLD) challenge designs are important in HIV vaccine research. Current methods for RLD designs rely heavily on an assumption of homogeneous risk of infection among animals, which, upon violation, can lead to invalid inferences and underpowered study designs. We propose to fit a discrete-time survival model with random effects that allows for heterogeneity in the risk of infection among animals and allows for predetermined challenge dose changes over time. Based on this model, we derive likelihood ratio tests and estimators for vaccine efficacy. A two-stage approach is proposed for optimizing the RLD design under cost constraints. Simulation studies demonstrate good finite sample properties of the proposed method and its superior performance compared to existing methods. We illustrate the application of the heterogeneous infection risk model on data from a real simian immunodeficiency virus vaccine study using Rhesus Macaques. The results of our study provide useful guidance for future RLD experimental design.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View