
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Multihop Power Scheduling and MIMO Relay Channel Estimation

Permalink
https://escholarship.org/uc/item/88d7f2gb

Author
Kong, Ting

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/88d7f2gb
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Multihop Power Scheduling and MIMO Relay Channel Estimation

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Ting Kong

March 2011

Dissertation Committee:

Professor Yingbo Hua, Chairperson
Professor Ilya Dumer
Professor Albert Wang



Copyright by
Ting Kong

2011



The Dissertation of Ting Kong is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would never have been able to finish my dissertation without the guidance of my

committee members, help from friends and support from my family. I would like to take

the opportunity to thank these people who pleasantly involved themselves in helping me

undertake this dissertation.

I would like to express my deepest gratitude to my advisor, Prof. Yingbo Hua, for

his excellent guidance, caring and support. I have benefited tremendously from countless

interactions and insightful discussions with him. His emphasis on the fundamental nature

of techniques and problems has not only inspired many aspects of this dissertation, but also

instilled me with a better understanding of research. He also deserves many, many thanks

for carefully reading my manuscripts and patiently improving my English writing.

I thank the other members of my dissertation committee, Prof. Dumer and Prof.

Wang, for all the time and effort they have invested in me. Thanks for their additional

guidance and instruction through the years, and for always being there whenever I needed

any help or advice.

I also want to think the members of Laboratory of Signals, Systems and Networks

in University of California, Riverside: Zheng Fang, Kezhu Hong, Yi Huang, Yuan Yu, Ben

Fellows, Shengyang Xu, Xiang Dong, Haitao Liu, Qian Gao and Ali C. Cirik. Thanks for

the helpful discussions and encouragement. Their friendship has made my Ph.D. experience

both fun and rewarding.

I would like to thank my parents, my husband and my parents-in-law for their

unconditional love, whole-hearted support and encouragement through the years.

iv



Finally, I would like to acknowledge that this work was supported in part by the

U.S. Army Research Office under the MURI Grant W911NF-04-1-0224.

v



To my parents.

vi



ABSTRACT OF THE DISSERTATION

Multihop Power Scheduling and MIMO Relay Channel Estimation

by

Ting Kong

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2011

Professor Yingbo Hua, Chairperson

While single-hop wireless networks are commonly deployed today, multihop wire-

less networks are still in early stages of development. These networks have tremendous

potential to be the technology of choice for providing ubiquitous Internet connectivity; min-

imizing the need for expensive wired infrastructure; and are relatively easy to deploy and

maintain. However, there are still many fundamental challenges in wireless multihop relay

networks. In this dissertation, we address two challenges that are of significant importance

for wireless multihop relay networks.

The first challenge we address is multihop transmission and power scheduling. In

a multihop relay network, there are two types of nodes: terminal nodes and router nodes.

Terminal nodes transmit directly to the local router node with a single hop. Router node

collects the data from its local terminal nodes and is responsible for transmitting these data

to the access point (AP). As the router nodes are more sophisticated than the terminal

nodes, we assume they can support complex signal processing techniques such as Dirty

Paper Coding (DPC) and can support multiple antennas communications as well. In this
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dissertation, our goal is to design a transmission scheme which can balance the power

consumption in each router node so as to prolong the network life-time.

We first propose a DPC based mutihop transmission scheme. An optimization

problem of power scheduling and rate allocation to minimize a power related objective

function or to maximize a rate related objective function is formulated. Specifically, we

model the power balance problem by using min max power function as the objective func-

tion. Then, a general gradient projection method is proposed to solve the optimization

problem for networks where both single antennas and multiple antennas can be equipped in

each node. Some useful properties are explored to realize fast computation. Furthermore,

an alternative subgroup method is also provided to reach a tradeoff between performance

and complexity when the network size becomes large. Numerical results show that our

proposed method achieves better power saving and balance performances compared with

existing schemes.

The second challenge we address is the channel estimation and training design for

multihop relay channels. We consider a two-hop amplify and forward (AF) Multiple-Input

Multiple-Output (MIMO) channel first. To overcome the ambiguity problem in channel

estimates, we propose an innovative channel estimation scheme. This scheme has two

phases. In the first phase, the source transmits no signal while the relay transmits and

the destination receives. In the second phase, the source transmits, the relay amplifies and

forwards, and the destination receives. At the destination, the data received in the first

phase are used to estimate the relay-to-destination channel, and the data received in the

second phase are used to estimate the source-to-relay channel. The linear minimum mean
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square error estimation (LMMSE) is used for channel estimation, which allows the use of

prior knowledge of channel correlations. The algorithms for finding the optimal source

training matrix used at the relay for the first phase, and the optimal source training matrix

at the source and the optimal relay training matrix at the relay for the second phase, are

developed. Power allocation along the diagonals of source and relay training matrices is

solved by using an alternating algorithm with low complexity and fast convergence. The

two-phase LMMSE based channel estimation method for two-hop AF MIMO relay channels

can be extended for multihop AF MIMO relay channel estimation.

In summary, we discuss and provide solutions to two critical challenges in wireless

multihop relay networks: multihop transmission and power scheduling; MIMO relay channel

estimation and training design. Our work advance the state-of-the-art in wireless multihop

relay networks, and bring us closer to realizing the vision of ubiquitous multihop relay

networks.
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Chapter 1

Introduction

1.1 Background

The rapid evolution of the mobile Internet technology has provided incentives

for building efficient multihop wireless networks [1]. The standard task group developing

IEEE 802.16j Mobile Multihop Relay (MMR) suggests extending the coverage of a base

station by deploying several relay stations around the base station [2]. Multihop relay

networks distinguish themselves from the existing infrastructure networks in that wireless

transmission is no longer limited between the base station and users, but is utilized to relay

information among users and relays as well. The potential advantages of such networks

include extending the coverage, reducing the infrastructure costs and expediting deployment

time.

Depending on the signal processing capabilities at relay nodes, relay node in multi-

hop networks can be categorized as amplify-and-forward (AF) relay and decode-and-forward
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(DF) relay. AF relay only amplifies and retransmits its received signal. Therefore, it in-

troduces noises at the relay. DF relay receives signal, decodes and encodes the information

before forwarding to the next relay.

Multihop relay networks can be classified by their application: mobile ad hoc

networks (MANET), wireless mesh networks (WMN) and wireless sensor networks (WSN).

In MANET, there is no fixed infrastructure and no pre-determined organization

of available links in the network. Individual nodes are responsible for dynamically discov-

ering which other nodes they can directly communicate with. An important assumption

is that not all the nodes can directly communicate with each other, so nodes are required

to relay packets on behalf of other nodes in order to deliver data across the network. A

significant feature of MANET is that rapid changes in connectivity and link characteristics

are introduced due to node mobility and power control practices [1].

In WMNs, nodes are comprised of mesh routers and mesh clients. Each mesh

router operates not only as a host but also as a router, forwarding packets on behalf of other

mesh routers that may not be within direct wireless transmission range of their destinations.

A WMN is dynamically self-organized and self-configured, with the mesh routers in the

network automatically establishing and maintaining mesh connectivity among themselves

(creating, in effect, an ad hoc network). This feature brings many advantages to WMNs such

as low up-front cost, easy network maintenance, robustness, and reliable service coverage

[3].

A WSN is composed of a large number of sensor nodes that are densely deployed

either inside the phenomenon or very close to it. The position of sensor nodes need not
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be predetermined. This allows random deployment in inaccessible terrains or disaster relief

operations. A unique feature of sensor networks is the cooperative effort of sensor nodes.

Sensor nodes are limited in power, computational capacities and memory [4].

The use of multiple antennas for wireless communication systems has gained over-

whelming interest during the last decade - both in academia and industry. Multiple-input

multiple-output (MIMO) systems can be utilized in order to accomplish a multiplexing gain,

a diversity gain, or an antenna gain, thus enhancing the bit rate, the error performance,

respectively [5]. MIMO can be sub-divided into three main categories, precoding, spatial

multiplexing (SM) and diversity coding [5]-[7].

Precoding is multi-stream beamforming (BF), in the narrowest definition. In more

general terms, it is considered to be all spatial processing that occurs at the transmitter.

In (single-layer) beamforming, the same signal is emitted from each of the transmit anten-

nas with appropriate phase (and sometimes gain) weighting such that the signal power is

maximized at the receiver input. The benefits of beamforming are to increase the received

signal gain, by making signals emitted from different antennas add up constructively, and

to reduce the multipath fading effect [8].

In spatial multiplexing, a high rate signal is split into multiple lower rate streams

and each stream is transmitted from a different transmit antenna in the same frequency

channel. If these signals arrive at the receiver antenna array with sufficiently different

spatial signatures, the receiver can separate these streams into (almost) parallel channels.

Spatial multiplexing is a very powerful technique for increasing channel capacity at higher

signal-to-noise ratios (SNR). The maximum number of spatial streams is limited by the
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lesser in the number of antennas at the transmitter or receiver [8].

In diversity coding, a single stream (unlike multiple streams in spatial multiplex-

ing) is transmitted, but the signal is coded using techniques called space time coding (STC).

Two types of space time codes widely used are space time block code (STBC) and space

time trellis code (STTC). The signal is emitted from each of the transmit antennas with full

or near orthogonal coding. Diversity coding exploits the independent fading in the multiple

antenna links to enhance signal diversity [8].

Employing MIMO in multihop relay networks have received much attention in

recent years, e.g., see [9][19]. It is well established that relays can substantially improve the

wireless coverage for users subject to limited power and spectral resources. MIMO relays

can provide additional power and spectral savings by exploiting the spatial multiplexing

and diversity of multiple antennas.

Although MIMO relays bring many unique advantages, they also present some

fundamental challenges due to the additional relay nodes. In this dissertation, we will

address two challenges in multihop MIMO relay networks: 1. multihop transmission and

power scheduling; 2. MIMO relay channel estimation and training design. A detailed

description of the challenges and a summary of our contributions are presented in next

section.
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1.2 Challenges and Contributions

1.2.1 Multihop Transmission and Power Scheduling

In a wireless multihop relay network, different nodes can play different roles. For

example, in sensor networks, by introducing clustering hierarchy, nodes organize themselves

into local clusters, with one node acting as the local cluster-head. Cluster-heads are gener-

ally more powerful than other sensor nodes and have more strict power control requirements.

If a cluster-head dies, it will end the useful life-time of the sensor nodes belonging to the

cluster [20][21].

We consider two types of nodes in a multihop relay network: terminal nodes and

router nodes. Terminal nodes transmit directly to their local router node with a single

hop. Router node collects the data from its local terminal nodes and is responsible for

transmitting these data to the access point (AP). Similar to the hierarchy in sensor networks,

router nodes provide backbone to relay data to AP and are subject to power consumption

limitation. As the router nodes are more sophisticated than the terminal nodes, we assume

they can support complex signal processing techniques such as DPC [22] and can support

multiple antennas communications as well. In this dissertation, we investigate multihop

transmission and power scheduling in such a mutihop network. It is assumed that DPC is

applied in each router node. Single antenna as well as multiple antennas might be equipped

in router nodes. Our goal is to balance the power consumption in each router node so as

to prolong the network life-time.

Some contributions of our work are as follows:
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• A DPC based multihop transmission strategy is proposed.

• An optimization problem of power scheduling and rate allocation is formulated to

minimize a power related objective function or to maximize a local rate demand

related objective function. Specifically, we model the power balance problem by using

min max power function as the objective function.

• A general gradient projection method is proposed to solve the optimization problem

for networks where both single antennas and multiple antennas can be equipped in

each node. Some useful properties are explored to realize fast computation.

• An alternative subgroup method is also provided to achieve a tradeoff between per-

formance and complexity when the network size becomes large.

• Our proposed method achieves better power performances compared with other ex-

isting transmission schemes.

1.2.2 MIMO Relay Channel Estimation and Training Design

Channel estimation and training design for single-hop MIMO channel is well known

[23]-[25]. However, for multihop relay channel, the study of both channel estimation algo-

rithms and training design is limited.

In this dissertation, a two-hop AF MIMO relay system is considered. An AF relay

is subject to limited signal processing functions and can not decode or estimate information.

Therefore, an AF relay may not be able to complete the task of channel estimation by fol-

lowing a single-hop MIMO channel estimation approach. It is because of such a reason that
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researchers have started to explore non-conventional MIMO channel estimation methods

for MIMO relays.

In previous work [26][27], researchers estimate the source-to-relay channel matrix

H1 and the relay-to-destination channel matrix H2 from the observed composite source-

relay-destination channel matrix Hc = H2FH1 where F is a known transformation matrix

applied at the AF relay. However, a disadvantage of this approach is that there is always a

scalar ambiguity for the estimates of H1 and H2.

In this dissertation, aiming at addressing the ambiguity problem in MIMO relay

channel estimates, we consider a different channel estimation scheme for the same type of

two-hop MIMO relay system as discussed in [26] and [27]. The optimal source and relay

training design is discussed.

Some of our contributions are as follows:

• A two-phase LMMSE estimation method for two-hop AF MIMO relay channel is

proposed to minimize the channel estimation mean square error (MSE) subject to

both energy constraints at the source and the relay. The method results in exact

channel estimates without any ambiguity.

• Optimal structures of source and relay training matrices are derived by using con-

vex optimization and majorization theory. Power allocation along the diagonals of

source and relay training matrices is solved by using an alternating algorithm with

low complexity and fast convergence.

• The two-phase LMMSE based channel estimation method for two-hop AF MIMO
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relay channels can be extended for multihop AF MIMO relay channel estimation.

1.3 Dissertation Scope and Outline

The rest of this dissertation is organized as follows: in chapter 2, a review of trans-

mission strategies in multihop relay networks is provided. Different transmission schemes are

categorized and compared. Descriptions of the transmission mechanism and performances

such as diversity, capacity are presented. Multihop transmission and power scheduling are

discussed in chapter 3. A DPC based multihop transmission scheme is proposed. An opti-

mization problem of power scheduling and rate allocation is formulated to minimize a power

related objective function or to maximize a local rate demand related objective function.

A general gradient projection method as well as a low-complexity method are proposed to

solve the problem. Compared with existing transmission schemes, our proposed DPC based

transmission scheme is more advantageous in power saving and power balance. In chap-

ter 4, we discuss the channel estimation and training design for MIMO relay channels. A

two-hop AF MIMO relay model is considered. A two-phase LMMSE estimation method is

proposed to minimize the channel estimation MSE subject to both energy constraints at the

source and the relay. Compared with previous channel estimation methods, our proposed

algorithm results in exact channel estimates without any ambiguity. Optimal structures of

source and relay training matrices are derived by using convex optimization and majoriza-

tion theory. Power allocation along the diagonals of source and relay training matrices is

solved by using an alternating algorithm with low complexity and fast convergence. Some

conclusions are drawn in chapter 5.
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Chapter 2

A Review of Transmission

Strategies in Multihop Relay

Networks

2.1 Introduction

Transmission strategy is a research topic of significant importance in multihop

relay networks. It not only reveals the performance properties such as throughput and

diversity, but provides a basis for resource management such as routing, scheduling and

power allocation. A large variety of schemes for multihop network transmission have been

investigated in the past a few years. In this chapter, we attempt to systematize these

research efforts, and provide an overview. Descriptions of the mechanisms and summaries

of performances such as throughput, diversity and complexity are presented. However,
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due to the consideration of article length, we omit detailed description and mathematical

presentation of each scheme. Please refer to [28] for details.

The existing transmission strategies for multihop relay networks are categorized

as follows:

• Single Antenna

– Single Relay

– Multiple Relays

∗ Two Stage Transmission

∗ Multi-stage Transmission

∗ Multi-stage Parallel Transmission

• Multiple Antennas

– Two Hop Transmission

– Multihop Transmission

– Parallel Partition Transmission

Above methods share a common assumption that all relays are synchronized.

Transmission schemes discussed in this chapter are shown in Table 2.1 and Table 2.2. The

categorization of different transmission methods can be difficult because of the various cri-

teria. However, aiming at revealing the fundamental differences, we categorize transmission

schemes based on following criteria:
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• Type of relay: AF, which introduces noise at relay; DF, which demands extra signal

processing complexity.

• Number of buffers at relay: one buffer which can only processes instantaneous infor-

mation; multiple buffers which can process the information received in a period of

time .

• Cooperation among relays: no cooperation, e.g., repetition based transmission; with

cooperation, e.g. distributed space time code (DSTC)

• Other criteria: for example, different system parameters such as CSI availability.

These criteria are considered with lowest priority as they do not reveal the fundamental

differences among the transmission strategies.

Table 2.1: An Overview of Multihop Network Transmission Schemes with Single Antenna

Single Antenna

Single Relay

repetition based

channel coding based

space time coding based

special cases

Multiple Relays
2 stage

repetition based

space time coding based

beamforming based

multi-stage
non-cooperative transmission

cooperative transmission

multi-stage parallel
Distributed Space Time Code (DSTC) AF

Distributed Space Time Code (DSTC) DF

For DSTC, in particular, either based on AF or DF, some criteria can be applied to

evaluate the virtual space time codes include diversity, code rate and maximum likelihood

(ML) decodability.

12



Table 2.2: An Overview of Multihop Network Transmission Schemes with Multiple Antennas

Multi-antennas

2 hop

convolutional code based (DF)

beamforming (BF) and BLAST based (DF)

DSTC based (AF)

Multihop

serial MIMO (DF)

scale and forward (AF)

cascaded Orthogonal Space Time Block Code (OSTBC) AF

Parallel Partition

Transmission

independent parallel partition based (AF)

flip and forward (AF)

2.2 System Model

2.2.1 System Model

Single Relay System Model

Single relay system model consists a source, a relay and a destination. There

are two time slots (orthogonal channel) involved in the transmission. Depending on varying

degrees of broadcasting and receive collision, four different cooperative transmission schemes

are proposed as follows [29]:

1. The source communicates with the relay and destination during the first time slot.

In the second time slot, both the relay and source communicate with the destina-

tion. This transmission scheme realizes maximum degrees of broadcasting and receive

collision.

2. The source communicates with the relay and destination over the first time slot. In

the second time slot, only the relay communicates with the destination terminal.

This transmission scheme realizes a maximum degree of broadcasting and exhibits no

receive collision. Fig.2.1 shows an example of this transmission scheme.
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3. The third transmission scheme is identical to transmission scheme 1 apart from the

fact that the destination chooses not to receive the direct source to destination signal

during the first time slot. This scheme does not implement broadcasting but realizes

receive collision.

4. The fourth transmission scheme is identical to transmission scheme 3 apart from the

fact that the source does not transmit to destination in the second time slot. This

scheme implements neither broadcasting nor receive collision.

S


R


D


Figure 2.1: Single relay model

Multiple Relays Two Stage Transmission System Model

The multiple relays two stage model under consideration is illustrated in Fig.2.2.

There are a source, a destination and N relay nodes. The transmission consists two stages:

broadcasting stage and cooperation stage. Treating the group of relay nodes R1, R2, · · · , RN

as the same position of the relay node R in the single relay model, the four transmission

schemes can be naturally extended to multiple relays case. Fig.2.2 is a natural extension of

transmission scheme 4 in single relay transmission model.
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Figure 2.2: Two stage multiple relays model

Multiple Relays Multi-stages Transmission System Model

The multi-stage multiple relays model is illustrated in Fig.2.3. This model consists

of a source node S and a destination node D. There are N intermediate relay nodes

Ri, i = 1, · · · , N being sequentially placed between S and D. Source node is indexed as 0

and destination node is indexed as N + 1. The intermediate relay nodes Ri, i = 1, · · · , N

are indexed as 1, 2, · · · , N sequentially. All the nodes in the network share a band of radio

frequency of B(Hz).
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Figure 2.3: Multi-stage multiple relays model
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Multiple Relays Multi-stage Parallel Transmission System Model

The multiple relays multi-stage parallel model is illustrated in Fig.2.4. There are

a source and a destination as well as N clusters of relay nodes. N clusters are placed

sequentially between source and destination with ni(i = 1, 2, · · · , N) relays in each cluster.

This model is a natural extension of the multiple relays multi-stage transmission model

with each relay node being replaced by a cluster of relay nodes. One particular constraint

imposed is that an intermediate relay cluster only receives packets from its nearest previous

cluster and transmits to its nearest following cluster.

S
 D


.
.
.


stage 1


.
.
.


stage 2


...
 .
.
.


stage N


.
.
.


.
.
.


Figure 2.4: Multi-stage multiple relays parallel model

2.2.2 Channel Model

Path loss and microscopic (Rayleigh) fading are considered in the channel model.

The basic node to node discrete-time complex baseband transmission model without node

cooperation is

yi,j =
(

1
di,j

)α/2

hi,jsi + nj (2.1)
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where yi,j is the received signal at node j from node i. si is the transmitted signal from

node i. di,j is the distance between node i and node j. α is the path loss exponent. hi,j

is the Rayleigh fading coefficient between node i and node j and is modelled as a complex

Gaussian random variable with zero mean and unit variance. The noise at each node is

assumed to be complex Gaussian distributed with variance σ2
n.

Furthermore, we assume the channel fading coefficients hi,j are independent across

different hops. Different CSI availability (coherence/differential) and channel coherence

time-symbol duration relation (frequency flat/selective channel) are both considered.

2.2.3 System Parameters

System parameters can be used to distinguish a transmission scheme. In the

following table, we list some of the system parameters.

Table 2.3: A List of System Parameters for Multihop Network Transmission Schemes

Node Type AF DF

Duplexity full duplex half duplex

Node Selection sixed Nodes selected Nodes
incremental

with feedback

CSI availability
full CSI

at R and D

full CSI at D

partial CSI at R

partial/no CSI

at R and D

Partial CSI second order statistics quantized feedback

Channel Type frequency flat fading frequency selective fading

Power Constraint R,S total power R total power
R, S individual

power

Modulation Type coherent differential

Synchronization block,carrier and symbol block and carrier carrier

Without special claim, the general scenario assumed in the following discussion is

half duplex; fixed nodes; full CSI at destination, no CSI at relays for AF and full CSI at

17



relays for DF; no partial CSI; frequency flat fading channel; individual power constraint at

source and relay; coherent modulation; block,carrier and symbol synchronization.
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2.3 Single Relay Transmission Schemes

Single relay model shown in Fig.2.1 is the building block for more complicated

multihop relay transmission models. The basic principle of transmission scheme design for

single relay is to achieve spatial diversity and/or temporal diversity through source-relay

cooperation. The research of transmission strategy for single relay model was initiated by A.

Sendonaris [30]-[32] with the idea of user cooperation. A. Sendonaris considers two sources

which have information s1, s2 respectively to transmit to the same destination. Each source

receives an attenuated and noisy version of the other source’s transmitted signal and uses

that, in conjunction with its own data, to construct its transmit signal. The destination

receives a noisy version of the sum of the attenuated signals of both sources. It is indicated

that user cooperation is beneficial and can result in a higher data rate and a decreased

sensitivity to channel variations. Later, it is generalized to realize temporal and spatial

diversity through the cooperation of source and relay. Generally, there are three ways

to achieve diversity: repetition based cooperation, channel coding based cooperation and

space time coding based cooperation. In [30]-[43], the relay is considered as a user so there

is no extra resource consumption compared with end-to-end transmission. In the following,

we will mainly present the transmission schemes from the relay cooperation perspective.

However, some additional information are also provided by considering relay as a user from

user cooperation perspective.

From end-to-end transmission (non-cooperative) to single relay assisted transmis-

sion (cooperative), the main goal is to introduce diversity. Different schemes are discussed

to provide diversity through different mechanics like repetition, channel coding and space
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time codes. As more orthogonal channel might be introduced by taking advantage of the

relay, our concern is the diversity multiplexing tradeoff (DMT). Assume B bits can be

transmitted from source to destination in T seconds in an end-to-end transmission, then

the benchmark information rate is B
T .

We assume there are two orthogonal channels. In the first orthogonal channel,

source broadcasts to relay and destination. In the second orthogonal channel, relay trans-

mits to destination. Transmission schemes in single relay case are compared in Table 2.4. It

shows that Nonorthogonal Amplify and Forward (NAF) and Dynamic Decode and Forward

(DDF) are two special cases of repetition based cooperation. The main difference of both

methods from the repetition method is they assume that a codeword consists of l′ consecu-

tive symbol intervals. Source transmits in every symbol interval while relay waits l′ intervals

and starts to transmit. In Table 2.4, d(r) is the diversity-multiplexing trade off and r is the

multiplexing gain. Please refer to [28] for detailed descriptions of each transmission scheme

listed in Table 2.4.
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Table 2.4: Single Relay Transmission Scheme Comparison

Name Characteristics Diversity and Capacity Performance

Repetition Based Transmission

fixed

relaying

AF/DF

[35]

always use S-R-D

AF: d(r) = 2(1− 2r),

0 ≤ r ≤ 0.5 full diversity

DF: d(r) = 1− 2r,

0 ≤ r ≤ 0.5 no full diversity

DF: limited by S-R

AF >direct in low rate

selection

relaying

AF/DF

[35]

|hS,R| > ht: S-R-D

otherwise: S-D

DF: d(r) = 2(1− 2r)

full diversity

selection DF

> direct in low rate

incremental

relaying

[35]

1 bit feedback

from D

R relay

when S-D fails

d(r) = 1− r, 0 ≤ r ≤ 1

full diversity
>selection relay

NAF [36]
wait l′ time slots

to transmit

d(r) ≤ (1− r) + (1− 2r)+

(equality:l′ = 0.5l)

DMT: upper

bound of single

relay AF

DDF [36]

R transmits

until l′CS,R > lR

R: data rate at S

d(r) ={
2(1− r), 0 ≤ r ≤ 0.5

1−r
r , 0.5 ≤ r ≤ 1

DMT optimal

for single relay

(0 ≤ r ≤ 0.5)

Channel Coding Based Transmission

no ST

diversity

[41]

R decode N1

full diversity

rate>repetition
entitle to unfairness

with ST

diversity

[43]

relay both N2

in time slot 2
the same > above in fast fading

Space Time Code Based Transmission

AF based [29]
R relays 2nd row

S sends 1st row
full diversity Code design criteria:

rank, determinant
DF based [46] R, S as ST code protocol 1,3 full diversity

Special Transmission

differential [47] diff. mod at S full diversity PDF of SNR and BER

frequency

selective

[49]

D-TR STBC

D-SC STBC

D-OFDM STBC

maximum diversity:

min{Ls,r, Lr,d}+ Ls,d + 2

L: the channel length

Pairwise Error

Probability analysis
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2.4 Multiple Relays Two Stage Transmission Schemes

For the multiple relays two-stage transmission, there are two phases: broadcast

phase and cooperation phase. Depending on the active links in each phase, we have four

versions of basic transmission scenarios as follows:

1. In broadcast phase, source broadcasts to relays and destination. In cooperation phase,

both source and relays communicate to destination.

2. In broadcast phase, source broadcasts to relays and destination. In cooperation phase,

only relays communicate to destination.

3. In broadcast phase, source communicates to relay only. In cooperation phase, source

and relays communicate to destination.

4. In broadcast phase, source communicates to relay and in cooperation phase, relays

communicate to destination.

The transmission schemes are categorized as Repetition Based Transmission and

Beamforming (BF) Based Transmission. An overview of the schemes are shown in Table 2.5

where GNAF is short for general non-orthogonal amplify and forward. The transmission

schemes under the framework of GNAF is summarized in Table 2.6 with specific parameter

values and performances. The transmission schemes under the framework of beamforming

are shown in Table 2.7 and Table 2.8. The system parameters, CSI availability, the objec-

tive functions and constraints of beamforming design, the close form of beamforming and

performances are compared. In Table 2.7, Pi stands for the power constraint for relay i, PR
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stands for overall power constraint for relays and PSR stands for overall power constraint

for source and relays. Please refer to [28] for detailed description of each scheme.

Ai, Bi, T1 and T2 are the system parameters of the GNAF transmission. In order

to clarify above parameters, we summarize the GNAF framework as follows:

In our general framework, the power and channel use allocation are included.

And we will consider the most comprehensive case in which source broadcasts to relays

and destination in broadcast phase, both source and relays communicate to destination in

cooperation phase. The broadcast phase comprises of T1 channel uses and the cooperation

phase comprises of T2 channel uses. The transmitted vector from the source is a T1 × 1

complex vector s satisfying E
(
sHs

)
= 1. The quantities α1, α2 and α3 are the power

allocation factors satisfying α1 + α2 + α3 = T1 + T2 so that P represents the total average

power spent by the source and the relays together. There are two steps:

• Step 1: in the broadcast phase, the received signal at the ith relay and the destination

is

yi =
√

α1Ph0,is + ni i = 1, 2, · · · , N

yN+1(1) =
√

α1Ph0,N+1s + nN+1(1)

There are complex matrices Ai and Bi at the ith relay. Ai and Bi are subject to

Frobenius norm constraint ‖Ai‖2 + ‖Bi‖2 ≤ 1. The transmitted signal at relay i is

xi =
1√

α1P + 1
(Aiyi + Biy∗i ) i = 1, 2, · · · , N

23



• Step 2: in the cooperation phase, the received signal at the destination is

yN+1(2) =
√

α2Ph0,N+1 (A0s + B0s∗) +
N∑

i=1

√
α3Phi,N+1xi + nN+1(2)

=
√

α2Ph0,N+1 (A0s + B0s∗) +
N∑

i=1

√
α3P

√
α1Phi,N+1√

α1P + 1

(
Aih0,is + Bih

∗
0,is

∗)

+
N∑

i=1

√
α3Phi,N+1√
α1P + 1

(Aini + Bin∗i ) + nN+1(2)

Stacking the received signal at destination at the first phase and the second phase

together, we have

yN+1 =




yN+1(1)

yN+1(2)


 =

√
α3α1P 2

α1P + 1
SH + W

where

S =




√
α1P+1

α3P s 0 · · · 0 · · · 0 · · · 0
√

(α1P+1)α2

α1α3P A0s A1s · · · ANs
√

(α1P+1)α2

α1α3P B0s∗ B1s∗ · · · BNs∗




HH =
[

h0,N+1 h1,N+1h0,1 · · · hN,N+1h0,N h0,N+1 · · · hN,N+1h
∗
0,N

]

W =




nN+1(1)

∑N
i=1

√
α3Phi,N+1√

α1P+1
(Aini + Bin∗i ) + nN+1(2)




fi in Table 2.7 and Table 2.8 is the ith beamformer in beamforming based trans-

mission. The framework of beamforming transmission is summarized as follows:

• In the first stage, the transmitter broadcasts to the relay and the destination. The

received signals are respectively as follows:

yi(1) = h0,is + ni(1) (2.2)
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yN+1(1) = h0,N+1s + nN+1(1) (2.3)

• The received signal at the destination at the second stage is

yN+1(2) =
N∑

i=1

fi√
1 + |h0,i|2

hi,N+1(h0,is + ni(1)) + nN+1(2) (2.4)

=




h0,1h1,N+1√
1+|h0,1|2

· · · h0,NhN,N+1√
1+|h0,N |2







f1

...

fN




s

+




n1(1)h1,N+1√
1+|h0,1|2

· · · nN (1)hN,N+1√
1+|h0,N |2







f1

...

fN




+ nN+1(2)

= hT fs + nT (1)f + nN+1(2)

where fi is the beamformer at the ith relay. Combined with (2.3), the received signal

at the destination can be written as



yN+1(1)

yN+1(2)


 =




h0,N+1

hT f


 s +




nN+1(1)

nT (1)f + nN+1(2)


 (2.5)
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Table 2.5: An Overview of Transmission Schemes with 2-stage Multiple Relays

Repetition Based general repetition[46][34][72]

Space Time Code Based

AF

GNAF

[44][45]

distributed dispersion code [54]

real/complex orthogonal, quasi-orthogonal code [59]

single symbol ML decodable code [60]

2-group ML decodable code [62]

multi-group ML decodable code [63]

Hurwitz random matrix based [64][50][65]

DSTC with low-rate feedback [66]

distributed differential ST code [67][68]

DF space time code based [46][34]

randomized space time code [69][70]

distributed non-coherent STC [71]

Beamforming Based

centralized BF and power [73][52]

distributed BF [75][76][77][81]

BF with 2nd order statistics [78]

BF with quantized feedback [79]

BF in frequency selective channel [80]

joint BF and decoder design [82]
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Table 2.6: Comparison of Different Transmission Schemes under GNAF Framework

T1, T2 Ai,Bi Diversity/Capacity Performance

GNAF

T1, T2 Ai,Bi

DMT lower bound:

d(r) ≥
max [1− r, (N + 1)

(1− r(N+1)
N

)+
]

delay/coding

gain efficient

non-exponential

ML complexity

Distributed Dispersion Code/OAF [54]

T1 = T2 Ai,Bi = 0

DMT:

min(T,N)
(
1− loglogP

logP

)

full diversity (T>N)

optimal power

allocation

Real Orthogonal Code [59]

T1, T2

AT
i Ai = κI,

AT
i Aj = −AT

j Ai,

Bi = 0 full diversity

linear decoding

complexity;

error rate

<random code;

diversity >

selection DF;

Complex Orthogonal Code [59]

T1, T2

GT
i Gi = κI,

GT
i Gj = −GT

j Gi,

Gi = AiorBi

-

Quasi-orthogonal Code [59]

T1, T2

GT
i Gi = κI(unitary),

Gi = Ai and Bi

-

Single-Symbol ML Decodable Code[60]

T1 = T2

1. Ai and Bi

no nonzero entries

at the same position.

2.Ai,Bi and Ai + Bi

are column-monomial

3.Ak1R
−1AH

k2

= Bk1R
−1BH

k2

= 0T2×T2 ,

1 ≤ k1 6= k2 ≤ N − 1.

4. Ak1R
−1AH

k2

+B∗
k1R

−1BH
k2

= diag[D1,k, · · · , DT2,k]

for 1 ≤ k ≤ N − 1.

full diversity

upper bound

of data rate

single symbol

ML decodability;

rate twice higher

repetition based

Two Group ML Decodable Code [62]

T1 = T2

unitary, satisfy

doubling construction rule
full diversity

2 group

ML decodable

Multi-group ML Decodable Code [63]

T1 = T2 AH
i R−1Aj + AH

j R−1Ai = 0 full diversity
multigroup

ML decodable
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Table 2.7: Comparison of Beamforming Schemes in 2-Stage Single Antenna Transmission

System

Parameter
CSI

Objective

Function

Constraints

BF design

Centralized BF [73][52]

h0,N+1 = 0

f0 = 0

R:h0,i, hi,N+1;

D: full CSI

Max SNR

≤ Pi

fi = αie
jθi ,optimize αi

θi = −[arg(h0,i) + arg(hi,N+1)]

f0 = 0
full CSI

at scheduler

Max E(SNR)

≤ PR

fi: largest eigenvector

Distributed BF [75][76][77][81]

P0 = 1

f0 = 0

R:h0,i, hi,N+1;

D: full CSI

Max E(SNR)

≤ PR

fi =
λh∗0,ih

∗
i,N+1‖h0,i‖2√
1+‖h0,i‖2

√
PR

λ = 1√
∑N

i=1

|h0,i|2|hi,N+1|2
1+|hs,i|2

λ : feedback from D

h0,N+1 = 0

f0 = 0

R:h0,i, hi,N+1;

D: full CSI

Max SNR

≤ Pi

D feedback common info to R

fi found locally

BF with Second Order Statistics [78]

h0,N+1 = 0

f0 = 0

2nd order

channel

statistics

Max E{SNR}
≤ Pi

fi solved by SDP

BF with Quantized Feedback [79]

h0,N+1 = 0

f0 = 0

R: h0,i + Bbits;

D full CSI

Min BER

≤ Pi

quantize h to index m

map to fm feedback to R

BF in Frequency Selective Channel [80]

h0,N+1 = 0

f0 = 0
D: full CSI

Min PR

SINR≥ γ
f = βD− 1

2 P{Q}

Joint BF and Decoder [82]

f0 = 0 3 CSI cases
Max SNR

≤ PS+R

decoder:MRC; BF: joint/selection
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Table 2.8: Performance Comparison of Beamforming Schemes in 2-Stage Single Antenna
Transmission

Name Reference Diversity Performance Analysis

centralized BF
[73][52] full diversity N -

[75] full diversity N + 1 -

distributed BF
[75][76][77][81]

full diversity N + 1

DMT: d(r) = (N + 1)(1− 2r)
outage probability analysis

[81] full diversity N -
BF with 2nd

order statistics
[78] -

O( 1
logN

) approxmate

to nonconvex max SNR

BF with QF [79] full diversity when B ≥ logN -
BF freq. sele. [80] - -

Joint BF/decoder [82] full diversity (N+1)for full CSI -
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2.5 Multiple Relays Multiple Stages Transmission Schemes

Multiple relays multiple stages transmission refers to the relaying strategy where

the packets generated in source are transmitted through several stages until they reach the

destination. According to the differences in basic transmission mechanism, the transmission

schemes can be categorized into two:

• Non-cooperative transmission: there is no cooperation between source and relays and

no cooperation among relays during the transmission process.

• Cooperative transmission: source and relay or relays cooperate to transmit packets

from source to destination.

Table 2.9 and Table 2.10 show a summary of multiple relays multiple stages trans-

mission schemes where S-SAF stands for sequential slotted amplify and forward (SAF).

For some relatively simple transmission schemes (such as single hop transmission),

we will try to present some mathematical analysis of the system performance such as end-to-

end throughput and end-to-end delay. We make following assumptions for the convenience

of analysis. For the tractability of the problem and the ease to analyze, we assume the

relays are placed equal-distantly from source to destination with a adjacent distance of

∆d. Although this network is obviously a simplification and rarely encountered in practice.

It allows for tractable analysis and for the establishment of important insights into the

performance of general multihop networks [83].

There are several sources of latency in a communication system [84]. In delay

analysis for linear multihop network, we only consider the signal processing delay caused
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Table 2.9: Multistage Transmission Schemes Comparison: Non-cooperative Schemes

Characteristics
Diversity

Capacity
Performance

Single Hop Transmission[83][84]

S to D directly
power-bandwidth

tradeoff

> multihop

in bandwidth

limited regime

Multihop Transmission: without Spatial Reuse[85][84][86][87]

forward to

nearest node

multihop diversity

(Non-)Ergodic Power

-bandwidth efficiency

Nopt = argminP

s.t.r ≥ R
B

(w/o delay constr) [84]

Nopt = argminPout [83]

outage probability

Multihop Transmission: with Rate Adaptive[85][83][88]

parallel

transmission
multihop diversity

power-bandwidth

tradeoff

CSI known

(at Tx)
multihop diversity

Nopt = argminP

s.t.r ≥ R
B

(non) ergodic power

-bandwidth tradeoff

Multihop Transmission: with Spatial Reuse and Rate Adaptive[88]

parallel

transmission
-

Power-bandwidth

tradeoff

Multinode Cooperative Diversity Based Transmission[91][96]

TDMA, each node

broadcasts; receiver

combine copies

full diversity =

cooperation nodes

SER expression

for N-node

with MPSK or QAM
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Table 2.10: Multistage Transmission Schemes Comparison: Cooperative Schemes

Characteristics
Diversity

Capacity
Performance

NAF[36]

s1: S broadcasts;

s2: R sends last

rx symbol,

S sends new symbols

DMT: d(r) =

(1− r) + N(1− 2r)+
Outperform

LW-STC [34]

DDF[36]

Rs starts to

transmit

when l′CSR > lR

DMT: d(r) =

(N + 1)(1− r),

0 ≤ r ≤ 1
N+1

1 + N(1−2r)
1−r

,
1

N+1
≤ r ≤ 0.5

1−r
r

, 0.5 ≤ r ≤ 1

achieve best DMT

when 0 ≤ r ≤ 1
N+1

.

SAF[90]

N Rs M slots

S,R sends in each slot

DMT upper bound:

d(r) = (1− r)++

N(1− M
M−1

r)

finite M , SAF DMT

< MISO upper bound

for r > M−1
M

;SAF

< Non-cooperative

S-SAF[90]

1 relay per slot

R sends last

rx

high multiplexing:

exploit diversity

Rs isolated:

upper DMT bound

2 Rs 3 slots case

reaches DMT Ubound;

r ≤ 2
3
: > NAF

best 2 relay scheme

Recursive Backward IC Based Transmission (full/half duplex)[83]

B + 1 slots

send B bits

rate grows: O(logN)

B −→∞:

no rate loss

> multihop in

higher rate; delay grows

exponentially with N

Coherent Multistage Relay with IC (DF)[94][95]

block Markov encoding

list decoding stripping
achievable rate

achieve the best known

rate for Gaussian

multiple relay channel
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by encoding and decoding at the transmitter and receiver,respectively. We assume the time

needed for one time encoding and decoding is Tp. The type of delay we considered is end-

to-end delay Tend. It is defined as the period of time between a symbol is encoded at the

source and is decoded at the destination.
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2.6 Multiple Relays Multiple Stages Parallel Transmission

Schemes

Multiple relays multiple stages parallel transmission refers to the transmission

scenario where there are multiple clusters. Different clusters are placed sequentially between

the source and the destination. Messages are received from adjacent previous cluster and

only pass on to adjacent following cluster. There are multiple relays in a cluster. If there

are only one node in each cluster, then the transmission scenario reduces to multiple relays

multiple stages transmission.

There are mainly two transmission schemes falling in this category:

• Multistage Distributed Space Time Codes (DSTC) based on AF protocol

• Multistage Distributed Space Time Codes (DSTC) based on DF protocol

The characteristic of Multistage DSTC protocol is as follows:

• A MIMO channel is modelled between two clusters.

• A broadcast channel is modelled from source to the first cluster.

• A multi-access channel is modelled from the last cluster to destination.

• Within one cluster, AF or DF based DSTC can be applied.

For the purpose of concise, we will omit the description of each transmission scheme

here. Please refer to [28] for more details.
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2.7 Multiple Antennas Transmission Schemes

When a node (either source, destination and/or relay) is equipped with more than

one antenna, the transmission schemes are categorized as multiple antennas transmission

schemes. Transmission schemes falling in this category are divided into two parts:

• Two-hop Transmission: the layer between source and destination can be either a single

multi-antenna relay or a group of single-antenna relays

• Multihop Transmission: multiple layers are placed from source to destination. Each

layer can be a single multi-antenna relay or a group of single-antenna relays

Table 2.12 shows a comparison of the major transmission schemes in multi-antenna

category. The characteristics, diversity and other performances are considered. It is as-

sumed that the source has Ms antennas, the relay has Mr antennas and the destination has

Md antennas.
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Table 2.11: Comparison of Multi-antenna based Transmission Schemes: Two-hop

Characteristics
Diversity/

Capacity
Performances

Convolutional Code Based Transmission (DF)[100][101][102]

relay gets N2

by decoding N1

STC encoded

full diversity

code design criteria

ST cooperation reduces

error rate of all nodes

BF and BLAST Based Transmission (DF)[103]

CSI at Tx;

no coordination

among relays

(single antenna relay)

achieve the same

capacity as MIMO
full degrees of freedom

Distributed Space Time Code (AF)[?][105]

unitary matrix

multiplication

(single antenna relay)

DMT: d(r) =

(min{Ms, Md} − r)

∗(N − r)

r ≤ min{Ms, Md, N} ;

Ms 6= Md: max diversity

Pairwise Error

Probability (PEP) analysis:

Ms = Md :(
1
P

)min{Ms,Md}N
;

Ms 6= Md :(
log1/Ms P

P

)MsN

;

Threshold Selection Combining (SC)/MRC (DF) [106]

multi-antenna at each relay

SC/MRC received signal

forward/BF signal to D

D: MRC with delayed signal

-

few relays with many

antennas is not

significantly worse

than many relays

with few antennas;

SC based is not

significantly worse

than MRC based

36



Table 2.12: Comparison of Multi-antenna based Transmission Schemes: Multihop

Characteristics
Diversity/

Capacity
Performances

Serial MIMO Transmission (DF) [107]

multi-antenna relay

as a layer; from layer

to layer as MIMO channel

optimal in DMT -

Scale and Forward Transmission (AF) [103][107]

each relay in

each layer simply

scale and forward

(single antenna relay)

full degree freedom

in high SNR;

lower bound of DMT

tradeoff of network

size, rate and

diversity in the

outage formulation

Cascaded OSTBC (AF) [108]

OSTBC transmitted

from source;

single antenna relay;

Ai at relay

maximal diversity
single symbol

decodability

Parallel Partition Transmission

Independent Parallel Partition Based Transmission (AF) [107]

divides a layer

into supernodes;

find independent

parallel AF paths;

multi-antennas relay

achieves diversity

upper bound
-

Flip and Forward Transmission (AF) [107]

use flip matrix

in each supernode;

mismatch between

two channels removed;

multi-antennas relay

maximal diversity
maximal

multiplexing gain
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Chapter 3

Multihop Transmission and Power

Scheduling

3.1 Introduction

Multihop relay transmission is being considered to improve coverage and increase

throughput for the next generation of wireless networks [1]. Different nodes play different

roles in a multihop relay networks. For example, in sensor networks, by introducing clus-

tering hierarchy, nodes organize themselves into local clusters, with one node acting as the

local cluster-head. Cluster-heads are generally more powerful than other sensor nodes and

have more strict power control requirements. If a cluster-head dies, it will end the useful

life-time of the sensor nodes belonging to the cluster [20][21].

Dirty Paper Coding (DPC) is introduced by Costa in [22]. The basic premise of

DPC is that if interference to a given user is known in advance, the encoding strategy can
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exploit the structure of the interference such that the capacity is the same as if there was no

interference at all. It is believed that the integration of DPC may lead to advanced multihop

networks with high spectral efficiency [110]. And some research work investigating DPC in

multihop relay networks are as follows. [111] proposed cooperative transmit diversity using

one-dimensional superposition modulation which is an instance of DPC and evaluated its

performance with computer simulations. [112] analyzed the superposition modulated coop-

erative transmission with outage probability and expands to two-dimensional modulation.

The author also applied a constellation rotation technique to this system in order to achieve

maximum coding gain.

In this chapter, we consider a multihop network where there are two types of

nodes: terminal nodes and router nodes. Terminal nodes transmit directly to the local

router node with a single hop. Router node collects the data from its local terminal nodes

and is responsible for transmitting these data to access point (AP). Similar to the hierarchy

in sensor networks, router nodes provide infrastructure/backbone to relay data to AP and

are subject to power consumption limitation. As the router nodes are more sophisticated

than the terminal nodes, we assume they can support complex signal processing techniques

such as DPC and can support multiple antennas communications as well. In this chapter,

we investigate the power scheduling in such a multihop networks where DPC is applied in

each router node. Single antenna as well as multiple antennas might be equipped in router

nodes. Our goal is to balance the power consumption in each router node so as to prolong

the network life-time.

Our work is related to [20][21] in using the similar multihop relay network model
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with additional DPC based signal processing capability in each router node. The differences

between our work and previous DPC based multihop networks [111] [112] is that the previous

work investigate DPC based diversity techniques while ours focus on space time power

scheduling of a DPC based multihop transmission scheme without taking advantage of

diversity.

Some contributions of our work are as follows:

• A DPC based transmission strategy is proposed for multihop networks.

• An optimization problem of power scheduling and rate allocation is formulated to

minimize a power related objective function or to maximize a local rate demand

related objective function. Specifically, we model the power balance problem by using

min max power function as the objective function.

• A general gradient projection method is proposed to solve the optimization problem

for networks where both single antennas and multiple antennas can be equipped in

each node. Some useful properties are explored to realize fast computation.

• An alternative subgroup method is also provided to achieve a tradeoff between per-

formance and complexity when the network size becomes large.

• Our proposed method achieves better performances compared with existing schemes.

The rest of the chapter is organized as follows. The system model and problem

formulation is given in Section 3.2. In Section 3.3 we introduce the DPC based transmission

strategy. Gradient projection method as well as a low-complexity subgroup method are
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provided in Section 3.4. Numerical simulation results are presented and analyzed in Section

3.5. Finally, some concluding remarks are given in Section 3.6.

3.2 System Model

In this section, we investigate a multihop network composed of terminal nodes and

router nodes. The network is divided into many local clusters. Within each cluster, terminal

nodes transmit directly to the local router with a single hop. Routers are organized as a

backbone, responsible for transmitting the collected information to the AP. Terminal nodes

are assumed to have limited signal processing capabilities while router nodes can support

advanced signal processing techniques such as DPC and multiple antennas. Depending on

the relative positions of router nodes and AP, there are two types of network topologies:

(a) AP outside router node cluster, (b). AP inside router node cluster. These two types of

topology are shown in Fig. 3.1. For the first case which is shown in Fig. 3.1 (a), it is natural

that the far away router nodes use nearer router nodes to relay information to AP. And we

can number the router nodes depending on its relative distance to AP in ascending order

as 1, 2, · · · ,K − 1 and AP is numbered as K. So there are totally K nodes in the multihop

relay network only considering router nodes and AP. For case 2 which is shown in Fig. 3.1

(b), it is more complicated to number the router nodes. However, we can always divide the

network into several subnetworks by using angular separations. Within each subnetwork,

the AP is outside the corresponding router nodes cluster and we can use the method in case

1 to number the router nodes in each subnetwork. Without loss of generality, we use the

topology of case 1 in the following discussions. The information collected at router node k
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is assumed to be rk(bits/s/Hz), k = 1, 2, · · · ,K. As we focus on the power scheduling for

router nodes, in the following we refer router nodes and AP as nodes for simplicity.

(a).
 (b)


AP
 router nodes
 terminal nodes


Figure 3.1: Multihop relay network topology: (a). AP outside router node cluster (b). AP
inside router node cluster

We assume the whole network share a bandwidth of W Hz and no frequency reuse

is applied within the network. Following [35], we assume that the nodes can not transmit

and receive at the same time.

We model a frequency flat fading channel between any two nodes. Channel coeffi-

cient remain unchanged during the transmission interval. Path loss and small scale fading

are both considered. We consider two scenarios in the following: single antenna equipped

at each node and multiple antennas equipped at each node.

For node with single antenna,

hk,j =
1

d
α/2
k,j

wk,j (3.1)

where hk,j is the channel coefficient from node k to node j. dk,j is the distance between
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node k and node j. α is the path loss exponent and wk,j is a complex Gaussian random

variable with zero mean and unit variance, modelling the Rayleigh fading between node k

and node j.

For node with M antennas,

Hk,j =
1

d
α/2
k,j

Wk,j (3.2)

where Hk,j is the channel response matrix between node j and node k. Wj,k consists of

i.i.d. random complex Gaussian elements and each of them conforms to the distribution

CN(0, 1).

Define Sin(k) as the set of the nodes which directly transmit information to node

k and Sout(k) as the set of the nodes which directly receive information from node k. The

power consumed at transmit nodes i (i = 1, 2, · · · ,K− 1) is Pk. And the power for the link

from node i to node j is Pi,j where Pi =
∑

j∈Sout(i)
Pi,j . The rate (bits/s/Hz) for the link

from node i to node j is Ri,j . The noise at each node j is modelled as a Gaussian variable

with zero mean and variance σ2
n. Noises in different nodes are independent from each other.

A flow conservation constraint for the multihop relay network is shown as follows:

rk ≤
∑

j∈Sout(k)

Rk,j −
∑

i∈Sin(k)

Ri,k k = 1, 2, · · · ,K − 1 (3.3)

For every link, the power pi,j and data rate Ri,j are related by the Shannon Ca-

pacity

Ri,j = log2(1 + SINRi,j) (3.4)

where SINRi,j is the signal to interference and noise ratio for the link from node i to

node j. Our interest is to investigate the interaction between the power vector P =
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[P1, P2, · · · , PK−1]T and the information rate vector demanded to transmit γ = [r1, r2, · · · , rK−1]T

while satisfying the flow conservation constraint.

Generally speaking, two types of optimization problem can be considered. One is

aiming at minimizing power related cost function and the other is aiming at maximizing

user rate related function which are shown as follows respectively:

min
{Pi,j ,Ri,j , ∀ i,j}

J(P) (3.5)

s.t. rk ≤
∑

j∈Sout(k)

Rk,j −
∑

i∈Sin(k)

Ri,k k = 1, 2, · · · ,K − 1

P ≥ 0

max
{Pi,j ,Ri,j , ∀ i,j}

J(γ) (3.6)

s.t. rk ≤
∑

j∈Sout(k)

Rk,j −
∑

i∈Sin(k)

Ri,k k = 1, 2, · · · ,K − 1

0 ≤ Pk ≤ pk, k = 1, 2, · · · ,K − 1

rk ≥ 0, k = 1, 2, · · · ,K − 1

where pk is the peak power constraint for node k. Both problems can be useful depending

on applications. Note that in each problem, the variables are Ri,j and Pi,j (i = 1, 2, · · · ,K−

1; j = i + 1, i + 2, · · · ,K).

One example of the power related function is

J(P) =

(
K−1∑

k=1

ckP
p
k

) 1
p

(3.7)

where ck are weights and p is a parameter. When p = 1 and ck = 1, k = 1, 2, · · · ,K − 1,
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the cost function reduces to minimizing the sum of power and

J(P) =
K−1∑

k=1

Pk (3.8)

From the definition of norm, we know ‖x‖p ≈ ‖x‖∞ when p → ∞. When ck = 1, k =

1, 2, · · · ,K − 1, p is large, then the cost function becomes

J(P) =

(
K−1∑

k=1

P p
k

) 1
p

≈ max (P1, P2, · · · , PK−1) (3.9)

In the following, we will use equation (3.9) as the objective function to solve the

optimization problem in (3.5). By minimizing the maximum power of the router node set,

we can enforce a policy to realize power balance.

3.3 Dirty Paper Coding based Multihop Transmission

In this section, we propose a DPC based transmission strategy for multihop relay

networks. In DPC based transmission, for a network with K − 1 ordered router nodes and

one AP (indexed as node K), we assign K − 1 orthogonal channels for K − 1 router nodes.

In orthogonal channel 1, node 1 divides its own data into K−1 parts and send them to node

2 , node 3, · · · , and node K (respectively) at the rates R1,2, R1,3, · · · , R1,K , (respectively)

using DPC. In orthogonal channel 2, node 2 combines its own data with that from node

1 and then divides them into K − 2 parts and then send these parts to node 3 , node 4 ,

· · · , and node K (respectively) at the rates R2,3, R2,4, · · · , R2,K , (respectively) using DPC.

This process continues until node K− 1 sends to node K its own data combined with those

from node 1, node 2, · · · , and node K − 2. We can use DPC in such a way that the data

stream meant for node j from node k is cancelled at node l where k < l < j . In Fig. 3.2,
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DPC based transmission as well as two conventional transmission schemes (Direct Access

and Nearest Neighbor) are illustrated. Direct Access is shown in Fig. 3.2 (a) where each

router node transmits to the AP directly with a single hop. Nearest Neighbor is shown in

Fig. 3.2 (b) where one router node only transmits to the router node which is nearest to

itself.

AP
 AP
 AP


(a) Direct Access
 (b) Nearest Neighbor
 (c) Dirty Paper Based


Figure 3.2: Transmission schemes: (a). Direct Access (b). Nearest Neighbor (c). Dirty
Paper Coding

In dirty paper coding based transmission, flow conservation constraint in (3.3) can

be written as

rk ≤
K∑

j=k+1

Rk,j −
k−1∑

i=1

Ri,k k = 1, 2, · · · ,K − 1 (3.10)

In the following section, we will provide solutions for the optimization problem

shown in (3.5) by applying DPC based transmission schemes both in SISO case and MIMO

case.
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3.4 Space Time Power Scheduling

In the following, we will provide solutions for the optimization problems under

DPC based transmission scheme in both SISO and MIMO cases. Without loss of generality,

we will discuss the optimization problem defined in (3.5) with (3.9) as cost function and

(3.10) as flow conservation constraint. Assume the time used for transmission for the whole

network is normalized to 1, so for DPC based transmission, every node occupies 1
K−1 of the

total time.

3.4.1 Single Antenna At Each Node (SISO)

In DPC, when node k transmits to downstream nodes i, (k < i ≤ K), one of the

downstream nodes j only interferes with its upstream nodes l, k < l < j , the rate from

node k to node j is

Rk,j = log2


1 + Pk,j

(
σ2

n

|hk,j |2 +
j−1∑

l=k+1

Pk,l

)−1

 (3.11)

The total power consumed by node k over the whole channel is Pk =
∑K

j=k+1 Pk,j

where

Pk,j =

(
σ2

n

|hk,j |2 +
j−1∑

m=k+1

Pk,m

)
(
2Rk,j − 1

)
(3.12)

where Pk,k = 0.

Stacking the flow conservation constraint in (3.10) for k = 1, 2, · · · ,K − 1 into a

vector form, it can be written as:

γK ≤ AKyK (3.13)
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where γK = (r1 r2 · · · rK−1)T and yK = x = (xT
1 xT

2 · · · xT
K−1)

T . We define

x1 = (R1,2 R1,3 · · · R1,K−1 R1,K)T (3.14)

x2 = (R2,3 R2,4 · · · R2,K)T

...

xK−1 = RK−1,K

The constraint matrix AK is a (K−1)× K(K−1)
2 matrix depending on the number of nodes

in the network. Some examples are as follows:

A2 = [1] (3.15)

A3 =




1 1 0

−1 0 1


 (3.16)

A4 =




1 1 1 0 0 0

−1 0 0 1 1 0

0 −1 0 −1 0 1




(3.17)

...

AK =




1 · · · · · · 1 0

−1 0

. . .
...

−1 0

AK−1




(3.18)
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And AK has following properties

AKAT
K =




K − 1 −1 · · · −1

−1 K − 1
. . .

...

...
. . . . . . −1

−1 · · · −1 K − 1




(3.19)

(
AKAT

K

)−1
=

1
K




2 1 · · · 1

1 2
. . .

...

...
. . . . . . 1

1 · · · 1 2




(3.20)

As P is a function of yK and yK ≥ 0 guarantees P ≥ 0, the optimization problem

in (3.5) with (3.10) as constraint can be written as

min
γK≤AKyK ,yK≥0

J(yK) (3.21)

Optimization with Reduced Dimension

In order to simplify (3.21), we need following theorems.

Theorem 1 : For any yK , if the equality γK ≤ AKyK does not hold, there is

another ỹK such that γK ≤ AK ỹK and J(ỹK) ≤ J(yK).

Proof: If γK ≤ AKyK , then without of generality , there is k0 such that for

k < k0, rk =
∑K

m=k+1 Rk,m − ∑k−1
i=1 Ri,k; rk0 <

∑K
m=k+1 Rk0,m − ∑k−1

i=1 Ri,k0 ; and for

k > k0, rk ≤
∑K

m=k+1 Rk,m − ∑k−1
i=1 Ri,k. Now, if we reduce any non-zero Rk0,m where

m > k0, then the resulting cost is also reduced.

Corollary : If y∗K = arg minγK≤AKyK ,yK≥0 J(yK), then γK = AKy∗K .
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Now we can write

min
γK≤AKyK ,yK≥0

J(yK) = min
γK=AKyK ,yK≥0

J(yK) (3.22)

Define

ST
3 =

[
1 −1 1

]
(3.23)

ST
4 =




0 0 0 1 −1 1

1 −1 0 1 0 0

1 0 −1 0 1 0




(3.24)

...

ST
k =




0 ST
k−1

1

... −I

1

I|0




(3.25)

where ST
k is a (k−1)(k−2)

2 × k(k−1)
2 matrix.

Theorem 2 : For k ≥ 3, null(Ak) = range(Sk), i.e., AkSk = 0 and rank(Ak) +

rank(Sk) = k(k−1)
2

Proof: It is easy to verify.

The solution space of γK = AKyK can now be expressed as

yK = AT
K

(
AKAT

K

)−1
γK + SKaK

.= t(aK) (3.26)

Then (3.22) can be written as

min
γK=AKyK ,yK≥0

J(yK) = min
t(aK)≥0

J(aK) (3.27)

This is an optimization problem with a reduced dimension.

50



Gradient Projection Method

In the following, we use gradient projection method to solve the optimization

problem in (3.27). The gradient is given by

∂J

∂a
=

∂tT

∂a
∂J

∂t
= ST

K

∂J(t)
∂t

|t=t(a) (3.28)

where ∂J(t)
∂t |t=t(a) = ∂J(x)

∂x |x=t(a) = g(x)|x=t(a) and we have dropped the subscript K from

aK for convenience. Provided that t(a) > 0, we can apply the unconstraint gradient search

with the Armijo rule for the step size. Namely, at iteration k,

a(k+1) = a(k) − βm ∂J

∂a
|a=a(k) (3.29)

where m is the smallest non-negative integer such that

J(t(a(k)))− J(t(a(k+1))) ≥ σβm

∥∥∥∥
∂J

∂a

∥∥∥∥
2

a=a(k)

(3.30)

where 0 < σ < 1. In order to maintain t(a) > 0 during the iteration process, we choose the

smallest non-negative integer m satisfying both (3.30) and t(ak+1) > 0.

Recall the cost function in (3.9), the gradient of the cost with respect to Rl,m,m ≥

l + 1, is

∂J

∂Rl,m
=

(
K−1∑

k=1

ckP
p
k

) 1−p
p K−1∑

k=1

ckP
p−1
k

K∑

j=k+1

∂Pk,j

∂Rl,m
(3.31)

Note that Rl,m = 0 and Pl,m = 0 for m ≤ l.

For l 6= k,

∂Pk,j

∂Rl,m
= 0 (3.32)

Hence,

∂J

∂Rl,m
=

(
K−1∑

k=1

ckP
p
k

) 1−p
p

clP
p−1
l

K∑

j=l+1

∂Pl,j

∂Rl,m
(3.33)
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For m ≥ j + 1,

∂Pl,j

∂Rl,m
= 0 (3.34)

It reflects that the “rate” from node l to node m does not affect the “power” from node l

to node j, if j ≤ m.

Hence, for m ≥ l + 1 (by default for Rl,m)

∂J

∂Rl,m
=

(
K−1∑

k=1

ckP
p
k

) 1−p
p

clP
p−1
l

K∑

j=m

∂Pl,j

∂Rl,m
(3.35)

For j = m,

∂Pl,m

∂Rl,m
= 2Rl,m ln2

(
σ2

n

|hl,m|2 +
m−1∑

ḿ=l

Pl,ḿ

)
(3.36)

For m < j ≤ K

∂Pl,j

∂Rl,m
= (2Rl,j − 1)

j−1∑

ḿ=l

∂Pl,ḿ

∂Rl,m
(3.37)

which should be used together with the previous expression to recursively compute ∂Pl,j

∂Rl,m
.

That is, for each l, choose j = l + 1, l + 2, · · · ,K in increasing order. For each j, compute

∂Pl,j

∂Rl,m
for all m = l + 1, , l + 2, · · · , j. With the knowledge of (3.31), g(x) is known. And

the gradient ∂J
∂a can be calculated accordingly.

In short, gradient projection method can be used to solve the reduced dimension

optimization problem in SISO case.

3.4.2 Multiple Antennas At Each Node (MIMO)

When each node in wireless multihop relay networks is equipped with M antennas,

we define Pk,j as the covariance matrix of the signal component sk,j transmitted from node

k to node j, where k = 1, 2, · · · ,K − 1 and j = j + 1, j + 2, · · · ,K. Then the data rate for
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sk,j is

Rk,j = log2 |I + Pk,jGk,j | (3.38)

where

Gk,j = HH
k,j

[
σ2

nI + Hk,j

(
j−1∑

m=k+1

Pk,m

)
HH

k,j

]−1

Hk,j (3.39)

The power consumed by sk,j is pk,j = tr(Pk,j). The power consumed by node k is

Pk =
K∑

j=k+1

pk,j =
K∑

j=k+1

tr(Pk,j) (3.40)

When Pk,m,m = k+1, · · · , j−1, are given, we have Gk,j and its eigen-decomposition

is denoted by

Gk,j = Qk,jΛk,jQH
k,j (3.41)

where Λk,j = diag (λk,j(1), λk,j(2), · · · , λk,j(nk)) consists of the eigenvalues in descending

order, and nk is the number of transmit antennas from node k. Then the optimal Pk,j is

given by

Pk,j = Qk,jFk,jQH
k,j (3.42)

where Fk,j = diag (fk,j(1), fk,j(2), · · · , fk,j(nj)).

According to waterfilling,

fk,j(i) =
(

vk,j − 1
λk,j(i)

)+

(3.43)

and
nk∑

i=1

(
vk,j − 1

λk,j(i)

)
= pk,j (3.44)

where (y)+ = max(y, 0). For each given pk,j , the number of non-zero diagonal elements in

Fk,j is easy to compute and is denoted by nk,j .

53



Optimization with Reduced Dimension

Similarly to SISO, we define

x =
[
xT

1 xT
2 · · · xT

K−1

]
(3.45)

where xj = [Rj,j+1 Rj,j+2 · · · Rj,K ]T .

p =
[
pT

1 pT
2 · · · pT

K−1

]
(3.46)

where pj = [pj,j+1 pj,j+2 · · · pj,K ]T . Also define r = [r1 r2 · · · rK−1]
T .

Using the introduced matrix S (4.26) and vector a (3.26), the reduced dimension

optimization problem (3.27) can be equivalently written as

min
x=A+r+Sa≥0,p≤p̄

J(p) (3.47)

Gradient Projection Method

The cost is generally non-linear and non-quadratic and even non-convex. But we

can use the gradient projection (GP) method and many initializations to search for the best

solution.

For (3.47), the GP method requires

∂J

∂a
=

∂xT

∂a
∂J

∂x
=

∂xT

∂a
∂pT

∂x
∂J

∂p
= ST ∂pT

∂x
∂J

∂p
(3.48)

where ∂J
∂p is easy to find in general once J is defined, but ∂pT

∂x is not easy to find.

However, there is a one-to-one mapping between p and x. In an abstract form,

we can write x = f(p), but the inverse of this function is not available in a closed form. To
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compute ∂pT

∂x , we can apply the gradient operation on both sides of x = f(p):

∂xT

∂x
=

∂pT

∂x
∂fT (p)

∂p
(3.49)

where the left side equals the identity matrix, and hence:

∂pT

∂x
=

(
∂fT (p)

∂p

)−1

(3.50)

Each entry of ∂fT (p)
∂p is determined by ∂Rj,k

∂pm,l
for some j, k, m and l.

To compute ∂Rj,k

∂pm,l
, we first note that

∂Rj,k

∂pm,l
= 0 if j 6= m (3.51)

and

∂Rj,k

∂pj,l
= 0 if k < l (3.52)

If j = m and k = l, as ∂ln|x| = tr[x−1∂x], we have

∂Rj,k

∂pj,k
=

∂

∂pj,k
log2|I + Pj,kGj,k| (3.53)

=
log2e

∂pj,k
tr

[
(I + Pj,kGj,k)

−1 ∂Pj,kGj,k

]

=
log2e

∂pj,k
tr

[
(I + Fj,kΛj,k)

−1 ∂Fj,kΛj,k

]

Since pj,k = tr(Fj,k) =
∑nj

i=1

(
vj,k − 1

λj,k(i)

)+
, we have ∂pj,k = nj,k∂vj,k. Then, we have

∂Fj,k = diag
(
Inj,k×nj,k

∂vj,k 0(nj−nj,k)×(nj−nj,k)

)
(3.54)

=
1

nj,k
diag

(
Inj,k×nj,k

0(nj−nj,k)×(nj−nj,k)

)
∂pj,k
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Therefore,

∂Rj,k

∂pj,k
=

log2e

nj,k

nj,k∑

i=1

λj,k(i)
1 + fj,kλj,k(i)

(3.55)

=
log2e

nj,k

nj,k∑

i=1

1
vj,k

=
log2e

vj,k
(3.56)

If k > l, we have

∂Rj,k

∂pj,l
(3.57)

=
∂

∂pj,l
log2|I + Pj,kGj,k|

=
log2e

∂pj,l
tr

[
(I + Pj,kGj,k)

−1 Pj,k∂Gj,k

]

=
log2e

∂pj,l
tr


(I + Pj,kGj,k)

−1 Pj,kHj,k∂


I + Hj,k

k−1∑

m=j+1

Pj,mHH
j,m



−1

HH
j,k




= − log2e

∂pj,l
tr


(I + Pj,kGj,k)

−1 Pj,kHj,k


I + Hj,k

k−1∑

m=j+1

Pj,mHH
j,k



−1

Hj,k(∂Pj,k)HH
j,k


I + Hj,k

k−1∑

m=j+1

Pj,mHH
j,k



−1

HH
j,k




The dimension of ∂fT (p)
∂p is K(K−1)

2 × K(K−1)
2 . But ∂fT (p)

∂p is highly structured. For example,

∂fT (p)
∂p

|K=3 =




1
v1,2ln2

∂r1,3

∂p1,2
0

0 1
v1,3ln2 0

0 0 1
v2,3ln2




(3.58)

In order to compute ∂J
∂a = ST ∂pT

∂x
∂J
∂p , we need to compute t = ∂pT

∂x
∂J
∂p =

(
∂fT (p)

∂p

)−1
∂J
∂p .
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We can define

t =




tK−1

tK−2

...

t1




,
∂J1

∂p
=




aK−1

aK−2

...

a1




(3.59)

∂fT (p)
∂p

=




BK−1 0 · · · 0

0 BK−2
. . .

...

...
. . . . . . 0

0 · · · 0 B1




(3.60)

where tk has the dimension k × 1, ak has the dimension k × 1, and Bk is upper triangular

and has the dimension k × k. Then we have

Bktk = ak, k = 1, 2, · · · ,K − 1 (3.61)

since Bk is upper triangular, tk = B−1
k ak can be easily computed by back-substitution.

That is, first compute the last element of tk, then the second last element, and so on.

3.4.3 Low Complexity Algorithm

It is also noted that when the dimension of rate distribution vector is large, the

gradient projection method becomes less efficient and the computation complexity is high.

Hence, in this section, we propose a solution to achieve a better tradeoff between perfor-

mance and complexity.

The basic idea is to decompose a large multihop relay network into several sub-

groups. The number of nodes in a subgroup is denoted by the subgroup size s. Fig.3.3 shows
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how a large multihop network is decomposed. In order to realize power balance, we should

try to pick up the nodes for a subgroup as evenly as possible from the original network.

In Fig.3.3, the original networks consisting 7 nodes. And it can be decomposed to either 3

subgroups with s = 3 or 2 subgroups with s = 4. It is worth noticing that when s = 2, it is

Direct Access. Therefore, our space time power scheduling scheme can be applied to each

subgroup with the dimension of rate distribution vector greatly reduced.

AP


subgroup 1


 s=3


subgroup 2


subgroup 3


s=4


subgroup 1


subgroup 2


Figure 3.3: Illustration of dividing multihop network into subgroups

The size of the subgroup s is a crucial parameter to decompose a large multihop

network. Given a fixed size of original multihop network, the possible choices of s is discrete

and should satisfy K−1
s−1 = integer, s > 0, s ∈ integer. Some numerical results in the next

section show that power performance varies with different choices of subgroup size. Given a

fixed distance, one interesting choice of the subgroup size is s = 3 for which the optimization

problem in (3.5) can produce a deterministic solution. By decomposing the large multihop

network into subgroups with group size s = 3 and use the deterministic solution, the

computation complexity is greatly reduced. Therefore, subgroup based low complexity
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method is a good candidate for suboptimal solution.

3.5 Numerical Results

In this section, we present some numerical results through simulations to provide

further insights. The fading factors are fixed wk,j = 1 and W is a matrix with all element

being 1. The number of antennas in each node is M = 2 for MIMO case. Local traffic

demands are assumed to be rk = 1, k = 1, 2, · · · ,K − 1. p = 50 is used in the objective

function. In the gradient projection method, some typical choices of the parameters are

β = 0.5, σ = 0.1.

• Comparison of power performances of different transmission schemes

We first compare our proposed gradient projection method with Direct Access and

Nearest Neighbor methods. In the following simulation, we assume the distance be-

tween two adjacent nodes is ∆d = 1. Fig.3.4 and Fig.3.5 compare maximal Pk of

Direct Access, Nearest Neighbor and DPC methods in SISO and MIMO cases, re-

spectively. In SISO case, the power loss exponent a = 3 while in MIMO case the

power loss exponent a = 1. Large a in MIMO case will result in huge power consump-

tion P1 as the power increases exponentially with the increase of distance. Therefore,

we choose a to be a small number in MIMO case for the convenience of comparing

the three transmission schemes. From both figures, we can observe that DPC method

balances the power consumption for each node while meeting the traffic demand. In

Direct Access, far away node is in disadvantage for the long distance to AP. In Nearest
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Neighbor, nearest node to AP is in disadvantage for relaying all the previous data to

AP. With DPC, we have additional freedom to optimize over power scheduling and

rate allocation to achieve a better performance. It is also worth noticing that under

different parameters such as path loss exponent, the performance of Direct Access and

Nearest Neighbor can be quite different.
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Direct Access
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Figure 3.4: Comparison of Pk for different transmission schemes in SISO (K=10,a=3)

In order to see the performance variation with regard to network size K, we define two

ratios: MaxPowerDA
MaxPowerDPC

and MaxPowerNN
MaxPowerDPC

where MaxPowerDA stands for the maximal

power of Pk with respect to k for Direct Access method and MaxPowerNN stands

for the maximal power of Pk with respect to k for Nearest Neighbor method. Fig. 3.6

shows both the ratio variations with the increase of the network size K. It is observed
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Figure 3.5: Comparison of Pk for different transmission schemes in MIMO (K=10,a=1)

that both ratios all far above 1 which means that the DPC method always consumes

less maximal power. One interesting observation is that the ratio MaxPowerDA
MaxPowerDPC

first

increases and then slowly decreases. The peak appears around K = 9. MaxPowerNN
MaxPowerDPC

increases with the increase of network size K. Because with more nodes in the network,

the power consumption at node K − 1 grows larger. Initialization of DPC method is

chosen to be 100 for K ≤ 11, 200 for K = 12, 300 for K = 13.

• Subgroup based low complexity algorithm

As discussed in previous section, the optimal subgroup size s can be investigated by

simulation given a fixed distance. Here, instead of fixing the distance between two

adjacent nodes, we fix the distance between the first node and AP. In the following
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Figure 3.6: Comparison of the ratio of max Pk (K = 3, 4, · · · , 13, a = 3)

simulations, we choose the distance to be D = 9. And the number of nodes in the

network K = 20. we will show the maximal power per node with different subgroup

sizes. Fig.3.7 and Fig.3.8 show the power performances when the initialization=100

and intializaiton=1,2,3,4,5, respectively. From both figures, we can observe that when

s = 2, it is Direct Access. From s = 2 to s = 3, the power drops most significantly.

The power differences between s = 3 and other subgroup are not very large. Therefore,

to achieve a tradeoff between performance and complexity, s = 3 seems to be a good

choice. Plus, when s = 3, the optimization problem in (3.5) has deterministic solution

which can be solved by bisection method, for example. That’s why in all figures, no

matter what the initialization situation is, the value for s = 3 is always the same. Thus

62



the deterministic solution greatly reduces the computation complexity introduced by

gradient projection.
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Figure 3.7: Comparison of max Pk versus different subgroup size (a = 4, D = 9,
initialization=100)

3.6 Conclusion

We proposed a DPC based transmission strategy for multihop relay networks. By

taking advantage of DPC, we have additional freedom to optimize over power scheduling

and rate allocation to realize the power balance goal. A general gradient projection method

is proposed to solve the optimization problem for networks where both single antennas and

multiple antennas can be equipped in each node. Some useful properties are explored to

realize fast computation. An alternative subgroup method is also provided to reach a good
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Figure 3.8: Comparison of max Pk versus different subgroup size (a = 4, D = 9,
initialization=1,2,3,4,5)

tradeoff between performance and complexity when the network size becomes large. Our

proposed method achieves performance advantage compared with existing schemes.
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Chapter 4

MIMO Relay Channel Estimation

and Training Design

4.1 Introduction

Relay-based cooperative communications have drawn great interest recently [30][35].

When multiple antennas are deployed at one or more nodes of the relay system, we also call

such relay system a MIMO relay system. The achievable rate and capacity upper bound

of a MIMO relay system have been studied in [9]. The diversity-multiplexing tradeoff of

multiantenna cooperative systems has been studied in [113].

Depending on the signal processing capabilities at relay nodes, MIMO coopera-

tive relay systems can be categorized as amplify-and-forward (AF) relays and decode-and-

forward (DF) relays. For AF MIMO relays, relay node only amplifies and retransmits its

received signal. Compared with DF relays, the complexity of AF relays is much lower. And
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this advantage is especially important when all nodes are equipped with multiple anten-

nas, since decoding multiple data streams involves much more computational efforts than

decoding a single data stream.

Many studies of AF MIMO relays can be found in [9]-[19] and the references

therein. As shown in these works, the knowledge of the channel matrices between nodes is

important for optimized system performances. For example, it is shown in [18] that if the

channel matrices between adjacent nodes in a multihop AF MIMO relay system are known,

then an optimal design of the source covariance matrix and the transformation matrices at

all relays should meet a diagonalization condition. In [12] and [14], the knowledge of channel

matrices are used to determine the optimal relay matrix and power allocation for two-hop

AF MIMO relays to maximize the mutual information between source and destination. [11]

extends the work in [12] to the joint design of source matrix and relay matrix. In [114],

capacity bounds and power allocation are derived with the assumption the channel matrices

are known.

Despite the importance of channel matrices information for AF MIMO relays,

there are limited discussions on channel estimation of two-hop AF MIMO relay systems.

To the best of our knowledge, channel estimation for single-hop MIMO channel has been

discussed in [23]-[25]. The single-hop MIMO channel estimation methods can be applied to

MIMO relays if every pair of adjacent MIMO nodes can be treated as a pair of transmitter

and receiver. However, AF MIMO relays are subject to limited signal processing functions

and can not decode or estimate information. Therefore, AF MIMO relays may not be

able to complete the task of channel estimation by following a single-hop MIMO channel
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estimation approach. It is because of such a reason that researchers have started to explore

channel estimation methods for MIMO relays. [26] and [27] addressed channel estimation for

two-hop AF MIMO relays. In [26] and [27], source-relay channel matrix H1 and the relay-

to-destination matrix H2 are estimated from the composite source-relay-destination matrix

HC = H2FH1 where F is the relay transformation matrix. [26] proposes a least square

(LS) based channel estimation method to obtain H1 and H2 respectively from H2FH1. The

method consists of a sequence of LS problems and requires a set of nR different relay matrices

Fi, i = 1, 2, · · · , nR where nR is the number of antennas at the relay. [27] studied sufficient

and necessary conditions on F to ensure a successful estimation of H1 and H2 from Hc. The

advantage of using Hc to estimate H1 and H2 is that for channel estimation, the relay node

does not need to do anything different from that for data transmission, and the destination

node performs all the tasks needed for estimation of H1 and H2. But a disadvantage of the

above approach is that there is always a scalar ambiguity for the estimates of H1 and H2,

i.e., Ĥ1 = αH1, Ĥ2 = 1
αH2. Furthermore, the choices of the training and relay matrices to

minimize the MSE of channel estimation has not been optimized in above literatures yet.

In this chapter, we proposed an LMMSE based channel estimation method for

two-hop AF MIMO relay channels in which the channel estimates are not subject to any

ambiguity.

The proposed channel estimation algorithm includes two phases. In the first phase,

the source node transmits no signal, but the relay transmits a training matrix SR and the

destination estimates H2. In the second phase, the source transmits a training matrix SS ,

the relay amplifies and forwards with the transformation matrix F, and the destination
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estimates H1 with the prior knowledge of H2. In this scheme, there is no ambiguity in the

channel estimates (i.e., the exact H1 and H2 are always found in the absence of noise).

This scheme requires the relay to generate and transmit signals in the first phase. But no

other advanced operation is required at the relay.

For phase 1, the channel estimation problem is the same as for a single-hop MIMO

channel. The channel estimation method we used in phase 1 is essentially a special case

of the one discussed in [25]. [25] discussed LMMSE channel estimation and training de-

sign for single-hop MIMO channel under Rician fading with both noise and interferences at

the receiver. In [25], the received signal at the receiver is Y = HP + N. By considering

Kronecker-structure system, the received signal becomes vec(Y) = (PT⊗I)vec(H)+vec(N)

where vec forms a vector by stacking up all columns of the matrix and ⊗ denotes the Kro-

necker product. [25] assumes that vec(H) ∈ CN (vec(H̄),R) and vec(N) ∈ CN (vec(N̄),S)

where H̄ and N̄ are the mean of H and N while R and S are covariance matrix of vec(H)

and vec(N) respectively. In our case, we consider correlated Rayleigh fading channel with

noise only in which H̄ = 0, N̄ = 0 and S = σ2
nI. Although our solution for single-hop

channel estimation falls into the framework of [25], we developed it independently and the

solution can adapt to different optimization objectives. Furthermore, we provide another

perspective to derive optimal training structure by using KKT conditions while [25] uses

majorization theory to find the structure.

For phase 2, we assume the Kronecker channel correlation model for H1 , i.e., H1 =

C
1
2
r1W1C

T
2
t1

or equivalently h1 = (C
1
2
t1
⊗C

1
2
r1)w1 with h1 = vec(H1) and w1 = vec(W1). All

elements in W1 are modelled as i.i.d. random variables with zero mean and unit variance.
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The matrix Cr1 is known as the receive correlation matrix of H1, and Ct1 the transmit

correlation matrix of H1. We will develop an algorithm for computing the optimal pair

of SS and F, which minimizes a cost of the covariance matrix of the LMMSE channel

estimation errors in H1. This problem is non-convex. But we will apply the majorization

theory to determine the optimal structures of SS and F so that the remaining problem is

much simpler to solve numerically.

It is clear that H1 can also be estimated by the same technique as in phase 1 if the

relay can perform advanced computations. The scheme shown above for phase 2 provides

an alternative approach, which reduces the burden on the relay.

To sum up, the contributions of this chapter are as follows:

• A two-phase LMMSE estimation method for two-hop AF MIMO relay channel is

proposed to minimize the channel estimation MSE subject to both power energy

constraints at the source and the relay. The method results in exact channel estimates

without any ambiguity.

• Optimal structures of training and relay matrices are derived by using convex opti-

mization and majorization theory. Power allocation along the diagonal of training

and relay matrices is solved by using an alternating algorithm with low complexity

and fast convergence.

• The two-phase LMMSE based channel estimation method for two-hop AF MIMO

relay channels can be extended to multihop AF MIMO relay channel estimation.

A comparison of our proposed LMMSE channel estimation method with the meth-
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ods in [26] and [27] is shown in Table 4.1. In the table, “Y” stands for “Yes” and “N” stands

for “No”. From the following table, we see that [26] and [27] both require substantial system

resources. For example, [26] requires 2nR time slots while [27] requires at least 6 time slots

to complete channel estimation.

Table 4.1: Comparison of Channel Estimation Methods for Two-hop AF MIMO Relay
Channels

criteria proposed method LS [26] Interim [27]

required time slots 4 2nR 6

power energy constraint at relay Y N N

training matrix design Y N N

relay matrix requirement any diagonal unitary

estimation ambiguity N Y Y

The rest of the chapter is organized as follows. The system model is given in

Section II. In Section III we present a general LMMSE based single-hop channel estimation

method. And the details of the two-phase LMMSE channel estimation method and training

design are discussed in IV. Some numerical results are demonstrated in section V. Finally,

some concluding remarks are given in VI.

4.2 System Model

A system model of two-hop MIMO relay system is shown in Fig.4.1. There are

three nodes in the system: source node S, relay node R and destination node D, all of

which are half-duplex and equipped with multiple antennas.

Here, we consider a single narrow-band subcarrier for which all channels are flat

fading. The number of antennas at S, R and D are nS , nR and nD, respectively. The MIMO

channel between S and R is H1 and the one between R and D is H2. In general, H1 and
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Figure 4.1: A two-hop AF MIMO relay system

H2 can be correlated and are modeled as

Hi = C
1
2
riWiC

T
2
ti

, i = 1, 2 (4.1)

where Cti = C
1
2
ti
C

H
2
ti

, Cri = C
1
2
riC

H
2
ri , i = 1, 2. All elements in Wi are modeled as i.i.d.

random variables with zero mean and unit variance. The matrix Cri is known as the

receive correlation matrix of Hi, and Cti the transmit correlation matrix of Hi.

F is the nR×nR relay transformation matrix at R. SS is nS×L training matrix at

S and SR is the nR×L training matrix at R. The noise at both relay node and destination

node are assumed to be complex Gaussian, zero-mean with unit variance. The noise matrix

at relay and at the destination are V ∈ CnR×L and N ∈ CnD×L respectively.

Our channel estimation method includes two phases:

• Phase 1: the source node S transmits no signal, the relay R transmits a training

matrix SR and the destination D estimates H2.

• Phase 2: the source S transmits a training matrix SS , the relay R amplifies and

forwards with the transformation matrix F, and the destination D estimates H1 with

the prior knowledge of H2.

It is assumed that H1, H2 keep constant during the two-phase estimation process. In the
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first phase, the received signal at the destination is

Y(1)
D = H2SR + N(1) (4.2)

In the second phase, the received signal at the relay is

YR = H1SS + V (4.3)

Either concurrently in full-duplex mode or with L-slot delay in half-duplex mode, the relay

transmits XR = FYR. The received signal at the destination is

Y(2)
D = H2FH1SS + H2FV + N(2) (4.4)

Power constraints at both source and relay are considered. The maximum power

consumed at the source and the relay are respectively PS and PR. In the first phase, the

energy constraint at the relay is

tr(SRSH
R ) ≤ PR (4.5)

In the second phase, the energy constraint at the source is

tr(SSSH
S ) ≤ PS (4.6)

and an averaged energy constraint is imposed on relay

E
{
tr

[
XRXH

R

]} ≤ PR (4.7)

where XR is the transmitted signal from relay and E is the expectation over the distribution

of H1 since H1 is unknown. The value of PR in (4.7) can be different from that in (4.5).
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4.3 Channel Estimation and Training Design for Phase 1

In the following section, we will briefly introduce our channel estimation algorithm

and training design for phase 1. Although the solution is a special case of [25], the optimal

training matrix structure is developed independently from the perspective of solving a

convex optimization problem.

In phase 1, the relay transmits SR ∈ CnR×L over L time slots subject to the total

energy constraint in (4.5).

Recall the fact vec(ABC) = (CT ⊗ A)vec(B) where ⊗ denotes the Kronecker

product [115]. We will also use frequently (A⊗B)(C⊗D) = AC⊗BD and (A⊗B)H =

AH ⊗BH . With H2 = C
1
2
r2W2C

T
2
t2

, we apply Kronecker product in [115] to (4.2) and have

y1
D =

(
ST

RC
1
2
t2
⊗C

1
2
r2

)
w2 + n(1) (4.8)

where y(1)
D = vec(Y(1)

D ), w2 = vec(w2) and n(1) = vec(N(1)). We consider the LMMSE

estimator of w2 from y(1)
D , i.e., ŵ2 = Ty(1)

D where T is such that the following is minimized:

J2 = E
{
tr

[
C0(w2 − ŵ2)(w2 − ŵ2)H

]}
(4.9)

We will be interested in the following two choices of C0:

If C0 = I, J2 = E(||w2 − ŵ2||2).

If C0 = C
H
2
t2

C
1
2
t2
⊗C

H
2
r2 C

1
2
r2 , J2 = E(||h2 − ĥ2||2).

It is useful to note that as long as C0 is positive definite, C0 does not affect the

optimal T which is given by

T = R
w2y

(1)H
D

R−1

y
(1)
D y

(1)H
D

(4.10)
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where R
w2y

(1)H
D

= E
[
w2y

(1)H
D

]
and R

y
(1)
D y

(1)H
D

= E
[
y(1)

D y(1)H
D

]
.

By substituting ŵ2 = Ty(1)
D , the covariance matrix of the estimation error δh2 =

h2 − ĥ2 is

Rδh2,δh2 = E
{
C0(w2 − ŵ2)(w2 − ŵ2)H

}
(4.11)

= C0

(
I−R

w2y
(1)
D

R−1

y
(1)
D y1

D

RH

w2y
(1)
D

)

= C0

[
I + C

H
2
t2

S∗R ⊗C
H
2
r2

(
I + ST

RCt2S
∗
R ⊗Cr2

)−1
ST

RC
1
2
t2
⊗C

1
2
r2

]

= C0

(
I + C

H
2
t2

S∗RST
RC

1
2
t2
⊗C

H
2
r2 C

1
2
r2

)−1

= C0

(
I + C

H
2
t2

CR
S C

1
2
t2
⊗C

H
2
r2 C

1
2
r2

)−1

where CR
S = S∗RST

R and we apply (I + AB)−1 = I−A(I + BA)−1B to derive the last two

steps.

It is easy to verify that with the optimal T,

J2 = J ′2
.= tr

(
C0

(
I + C

H
2
t2

CSR
C

1
2
t2
⊗C

H
2
r2 C

1
2
r2

)−1
)

(4.12)

If T is arbitrary, J2 ≥ J ′2.

Once CSR
is fixed, J ′2 is invariant to SR. So, to find the optimal relay training

matrix SR for phase 1, it suffices to find CSR
by solving the following problem:

min
CSR

≥0
J ′2 (4.13)

s.t. tr(CSR
) ≤ PR

where CSR
≥ 0 is the positive semidefinite constraint on CSR

, and PR is the power bound

at the relay.
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The problem (4.13) is convex. In Appendix A, we apply the generalized KKT

conditions [117] to arrive at the following optimal solution: CSR
= Ut2CUH

t2 where Ut2 is

the unitary eigenvector matrix of Ct2 and C is a diagonal matrix with its diagonal elements

c(j), j = 1, 2, · · · , nR, either equal to zero or given by the positive solution of the following

equations:

λ1(j)λt2(j)
nR∑

i=1

λ2(i)λr2(i)
[1 + λr2(i)λt2(j)c(j)]

2 = µ, j = 1, 2, · · · , nR (4.14)

where µ > 0 is such that tr(C) = PR. Recall C0 = C1⊗C2. Here, λ2(i) and λr2(i) are the

ith largest eigenvalue of C2 and Cr2 . λ1(j) and λt2(j) are the jth largest eigenvalue of C1

and Ct2 .

For any given µ > 0, for each j, c(j) can be easily found by the bi-section search

[119] since the left side expression of (4.14) is a monotonically decreasing function of c(j).

Consequently, tr(CSR
) = tr(C) =

∑nR
j=1 c(j) is a monotonically decreasing function of µ,

and hence the optimal µ can be found by an outer-loop bi-section search.

The above solution for CSR
is similar to one in [25] although a different method

of derivation was used in [25].

4.4 Channel Estimation and Training Design for Phase 2

In the following section, we will discuss the channel estimation and training design

for two-hop channel estimation phase 2. An optimization problem to minimize the MSE of

channel estimation is formulated. Optimal source training and relay matrices structures are

derived using majorization theory. With the derived structures, the power allocation along
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the diagonal of training and relay matrices is greatly simplified. Different power allocation

solutions are proposed for different channel correlation situations.

4.4.1 Channel estimation

In phase 2, the source transmits SS ∈ CnS×L over L time slots subject to the

energy constraint (4.6). Applying the vec operator to XR, we have xR = vec(XR) =

(ST
S ⊗ F)vec(H1) + (I ⊗ F)vec(V). Also recall h1 = vec(H1) = (C1/2

t1
⊗ C1/2

r1 )vec(W1).

Then, it is easy to verify that (4.7) becomes

tr
(
ST

SCt1S
∗
S ⊗ FCr1F

H + I⊗ FFH
) ≤ PR (4.15)

Applying vec operator to (4.4), the vector form of Y(2)
D is

y(2)
D =

(
ST

S ⊗H2F
)
h1 + (I⊗H2F)v + n(2) (4.16)

Unlike the discussion in Section 4.3, we now only focus on the mean squared errors

of ĥ1 = vec(Ĥ1). The choice of the mean squared errors of ŵ1 = vec(Ŵ1) would make the

optimal training design more difficult, which will not be further mentioned. Namely, we

define the cost

J1
.= E{tr[(h1 − ĥ1)(h1 − ĥ1)H ]} (4.17)

without any other weighting.

The LMMSE estimation of h1 is given by ĥ1 = R
h1,y

(2)
D

R−1

y
(2)
D ,y

(2)
D

y(2)
D . The covari-

ance matrix of the estimation error δh1 = h1 − ĥ1 is well known as

Rδh1,δh1 = Rh1,h1 −R
h1,y

(2)
D

R−1

y
(2)
D ,y

(2)
D

RH

h1,y
(2)
D

(4.18)
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where Rh1,h1 = E
{
h1hH

1

}
= Ct1 ⊗Cr1 . Therefore

R
h1y

(2)
D

= E
[
h1y

(2)H

D

]
= (Ct1 ⊗Cr1)

(
ST

S ⊗H2F
)H

= Ct1S
∗
S ⊗Cr1F

HHH
2 (4.19)

and

R
y

(2)
D y

(2)
D

= E
[
y(2)

D y(2)H

D

]
= ST

SCt1S
∗
S ⊗H2FCr1F

HHH
2 + I⊗H2FFHHH

2 + I (4.20)

Therefore, with the LMMSE of h1 and (4.19), (4.20), we have

J1 = J ′1 (4.21)

.= tr
{
Rδh1,δhH

1

}

= tr [Ct1 ⊗Cr1 ]− tr
[(

Ct1S
∗
S ⊗Cr1F

HHH
2

)

· [ST
SCt1S

∗
S ⊗H2FCr1F

HHH
2 + I⊗H2FFHHH

2 + I
]−1 (

ST
SCH

t1 ⊗H2FCH
r1

)]

In other words, with any other linear estimator of h1, J1 ≥ J ′1.

4.4.2 Training Design Problem

The optimal training and relay matrices design problem for phase 2 is formulated

as

minSS ,F J ′1 (4.22)

s.t. tr(SSSH
S ) ≤ PS

tr (RxR,xR) ≤ PR

where RxR,xR = E
{
xRxH

R

}
= ST

SCt1S
∗
S ⊗ FCr1F

H + I⊗ FFH as in (4.15).
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With (4.15) and (4.21), the optimization problem in (4.22) can be written as

max
SS ,F

tr
{[

ST
SCt1S

∗
S ⊗H2FCr1F

HHH
2 + I⊗H2FFHHH

2 + I
]−1

(
ST

SCH
t1Ct1S

∗
S ⊗H2FCH

r1
Cr1F

HHH
2

)}

s.t. tr
{
ST

SS∗S
} ≤ PS (4.23)

tr
{
ST

SCt1S
∗
S ⊗ FCr1F

H + I⊗ FFH
} ≤ PR

4.4.3 Decomposition of Trainings

In this section, we show a decomposition of Trainings into two sets of components:

unitary components and diagonal components.

Denote the eigenvalue decompositions (EVD) of ST
SCt1S

∗
S and H2FCr1F

HHH
2 ,

respectively, as

ST
SCt1S

∗
S = USΛSUH

S (4.24)

H2FCr1F
HHH

2 = UFΛFUH
F (4.25)

where the U matrices are the unitary eigenvector matrices and the Λ matrices are the

diagonal eigenvalue matrices with descending diagonal elements.

Also let Ct1 = Ut1Λt1U
H
t1 and Cr1 = Ur1Λr1U

H
r1

be the EVDs of Ct1 and Cr1 ,

respectively, with descending eigenvalues. Define C1/2
t1

= Ut1Λ
1/2
t1

and C1/2
r1 = Ur1Λ

1/2
r1 .

Then, we can write

ST
SC1/2

t1
= USΛ1/2

S QS (4.26)

H2FC1/2
r1

= UFΛ1/2
F QF (4.27)
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where QS and QF are unitary matrices.

It is important to note here that if Ct1 , Cr1 and H2 are nonsingular (which is

assumed unless specified otherwise), the training matrices SS and F are uniquely determined

by the unitary components: US , UF , QS , QF and the diagonal components: ΛS , ΛF .

Namely, ST
S = USΛ1/2

S QSC−1/2
t1

and F = H−1
2 UFΛ1/2

F QFC−1/2
r1 .

It then follows from (4.17) that

J ′1 − tr(Ct1 ⊗Cr1)

= −tr
{[

ST
SCt1S

∗
S ⊗H2FCr1F

HHH
2 + I⊗H2FFHHH

2 + I
]−1

(
ST

SCH
t1Ct1S

∗
S ⊗H2FCH

r1
Cr1F

HHH
2

)}

= −tr

{[
USΛSUH

S ⊗UFΛFUH
F + USUH

S ⊗UFΛ
1
2
FQFC

− 1
2

r1 C
−H

2
r1 QH

F Λ
H
2
F UH

F + I
]−1

(
USΛ

1
2
SQSC

− 1
2

t1
CH

t1Ct1C
−H

2
t1

QH
S Λ

H
2
S UH

S ⊗UF Λ
1
2
FQFC

− 1
2

r1 CH
r1

Cr1C
−H

2
r1 QH

F Λ
H
2
F UH

F

)}

= −tr

{[
USΛSUH

S ⊗UFΛFUH
F + USUH

S ⊗UFΛ
1
2
FQFΛ−1

r1
QH

F Λ
H
2
F UH

F + I
]−1

(
USΛ

1
2
SQSΛt1Q

H
S Λ

H
2
S UH

S ⊗UFΛ
1
2
FQFΛr1Q

H
F Λ

H
2
F UH

F

)}

= −tr

{(
ΛS ⊗ΛF + I⊗Λ

1
2
FQFΛ−1

r1
QH

F Λ
H
2
F + I

)−1

(
Λ

1
2
SQSΛt1Q

H
S Λ

H
2
S ⊗Λ

1
2
FQFΛr1Q

H
F Λ

H
2
F

)}
(4.28)

We can see from the above equation that the cost J ′1 is invariant to US and UF but depends

on ΛS , ΛF , QS and QF .

It is easy to verify that the energy constraint at the source can now be written as

tr
{
ΛSQSΛ−1

t1
QH

S

} ≤ PS (4.29)

which depends on ΛS and QS , and is invariant to all other components of the trainings.
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To simplify the energy constraint at the relay, we denote the singular value decom-

position (SVD): H2 = UH2ΣH2V
H
H2

, with descending singular values, where UH2 and VH2

are (square) unitary singular vector matrices. Note that we will use Σ2
H2

= ΣH2Σ
H
H2

in the

case where H2 is non-square. Then, using (4.26), (4.27) and tr(A⊗B) = tr(A)tr(B), one

can verify that the relay energy constraint (4.7) can be rewritten as

tr {ΛS} tr
{
Σ−2

H2
UH

H2
UFΛFUH

F UH2

}
(4.30)

+L · tr
{
Σ−2

H2
UH

H2
UFΛ

1
2
FQFΛ−1

r1
QH

F Λ
H
2
F UH

F UH2

}
≤ PR

which depends on ΛS , ΛF , UF and QF , and is invariant to US and QS .

In the following two sub-sections, we will show how to identify the optimal unitary

components and the optimal diagonal components, respectively.

4.4.4 Optimal Unitary Components of the Trainings

Among the training components, we have the unitary (matrix) components US ,

QS , UF and QF , and the diagonal (matrix) components ΛS and ΛF . The optimality of

the choices of the unitary components are given by following two theorems.

Theorem 1: For any Cr1 and Ct1 , the solution to the problem (4.22) is such that

QS = I and US is arbitrary unitary.

Proof: See Appendix B.

Theorem 2: If Cr1 = αI, the solution to (4.22) is such that UF = UH2 and QF

is arbitrary unitary.

Proof: See Appendix C.
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Namely, if Cr1 = αI, then we can choose US = I and QF = I as optimal, and the

optimal SS and F have the following structures:

ST
S = Λ1/2

S C−1/2
t1

(4.31)

F =
1√
α
VH2Σ

−1
H2

Λ1/2
F (4.32)

If Cr1 6= αI, finding the optimal QF (which also affects the optimal UF ) is a

difficult problem.

In the following two sections, we will propose algorithms to find ΛS and ΛF for

the general case as well as for the special case where Ct1 = βI,Cr1 = αI.

4.4.5 Optimal Diagonal Components of the Trainings: General Case

In this section, we apply QS = I, QF = I, UF = UH2 and US = I to develop

efficient algorithms for finding the optimal ΛS and ΛF . The above choice of the unitary

components is optimal if Cr1 is proportional to the identity matrix, and has no known

optimality property otherwise.

Then, the training design problem (4.22) becomes

min
ΛS≥0,ΛF≥0

−tr

{(
ΛS ⊗ΛF + I⊗Λ

1
2
FΛ−1

r1
Λ

H
2
F + I

)−1 (
Λ

1
2
SΛt1Λ

H
2
S ⊗Λ

1
2
FΛr1Λ

H
2
F

)}

s.t. tr
{
ΛSΛ−1

t1

} ≤ PS (4.33)

tr {ΛS} tr
{
Σ−2

H2
ΛF

}
+ Ltr

{
Σ−2

H2
Λ

1
2
FΛ−1

r1
Λ

H
2
F

}
≤ PR

Denote λS(i), λF (i), λt1(i), λr1(i) and σH2(i) as the ith diagonal element of ΛS ,ΛF ,Λt1 ,Λr1
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and ΣH2 , respectively. The problem (4.33) can be further written as

min
{λS(i)≥0,∀i},{λF (j)≥0,∀j}

−
L∑

i=1

nD∑

j=1

λS(i)λt1(i)λF (j)λr1(j)
λS(i)λF (j) + λF (j)λ−1

r1 (j) + 1
(4.34)

s.t.
L∑

i=1

λ−1
t1

(i)λS(i) ≤ PS

(
L∑

i=1

λS(i)

)


nD∑

j=1

σ−2
H2

(j)λF (j)


 + L

nD∑

j=1

σ−2
H2

(j)λ−1
r1

(j)λF (j) ≤ PR

Let n̄S = rank(Ct1) and n̄F = min(rank(Cr1), rank(H2)). Obviously, for i > n̄S ,

λ−1
t1

(i) = ∞, and for j > n̄F , σ−2
H2

(j)λ−1
r1

(j) = ∞. From the energy constraints in (4.34),

it is easy to see that the solution to (4.34) must be such that λS(i) = 0 for L ≥ i > n̄S

and λF (j) = 0 for nD ≥ j > n̄F . So, we can replace L and nD in (4.34) by n̄S and n̄F ,

respectively. Also note that for the problem (4.34), we do not require the non-singularity

condition on Ct1 , Cr1 and H2. It also means that the inverse in (4.31) and (4.32) should

be replaced by pseudoinverse in the case where H2 and/or Ct1 is singular.

The problem (4.34) is non-convex. But if we fix λF (j) for all j, the optimization

over λS(i) for all i is convex. Similarly, if we fix λS(i) for all i, the optimization over λF (j)

for all j is also convex. By alternating between the two sub-optimizations, we can find a

local optimal solution to (4.34).

The algorithms of the two sub-optimizations are shown next.

1. Optimizing {λF (j)} with fixed {λS(i)}

We use a group of λS(i), i = 1, · · · , n̄S which satisfies
∑n̄S

i=1
λS(i)
λt1 (i) = PS . Therefore,
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the original problem in (4.34) is transformed as

min
{λF (j)}

−
n̄S∑

i=1

n̄F∑

j=1

λS(i)λt1(i)λr1(j)λF (j)[
λS(i) + λ−1

r1 (j)
]
λF (j) + 1

(4.35)

s.t.

n̄S∑

i=1

λS(i)
n̄F∑

j=1

λF (j)
σ2

H2
(j)

+ L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

≤ PR

In the following, we will use Lagrange multiplier method to solve above problem.

The Lagrange function is

LF = −
n̄S∑

i=1

n̄F∑

j=1

λS(i)λt1(i)λr1(j)λF (j)[
λS(i) + λ−1

r1 (j)
]
λF (j) + 1

(4.36)

+µ




n̄S∑

i=1

λS(i)
n̄F∑

j=1

λF (j)
σ2

H2
(j)

+ L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

− PR




The derivative of LF with respect to λF (j) is

∂LF

∂λF (j)
= −

n̄S∑

i=1

λt1(i)λr1(j)λS(i){[
λS(i) + λ−1

r1 (j)
]
λF (j) + 1

}2 + µ

[
n̄S∑

i=1

λS(i)
σ2

H2
(j)

+
L

σ2
H2

(j)λr1(j)

]
(4.37)

Therefore, according to KKT conditions [117], the solution λF (j), j = 1, · · · , n̄F

need to satisfy following equations:

n̄S∑

i=1

λt1(i)λr1(j)λS(i){[
λS(i) + λ−1

r1 (j)
]
λF (j) + 1

}2 = µ

[
n̄S∑

i=1

λS(i)
σ2

H2
(j)

+
L

σ2
H2

(j)λr1(j)

]
(4.38)

f(λF ) =
n̄S∑

i=1

λS(i)
n̄F∑

j=1

λF (j)
σ2

H2
(j)

+ L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

= PR (4.39)

where λF = [λF (1), · · · , λF (n̄F )]T .

Let the left hand side of (4.38)

gj(λF (j)) =
n̄S∑

i=1

λt1(i)λr1(j)λS(i){[
λS(i) + λ−1

r1 (j)
]
λF (j) + 1

}2 (4.40)
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It can be observed that gj(·) is a monotonically decreasing function with respect to λF (j).

Therefore, µ is monotonically decreasing with the increase of λF (j).

So for each set of the newly found λS(i) for all i, we check the energy constraint.

If the constraint is violated, we increase µ. Or otherwise, we reduce µ. This is because

gj(λF (j)) is a decreasing function of λS(i). The search for the optimal µ can follow the

bi-section method [119].

In order to apply bi-section method, we need the range of both λF (j) and µ:

The range of λF (j) is

0 ≤ λF (j) ≤ PR∑n̄S
i=1 λS(i)

∑n̄F
j=1 σ−2

H2
(j) + L

∑n̄F
j=1 σ−2

H2
(j)λ−1

r1 (j)
= λmax

F (4.41)

The range of µ is

0 ≤ µ ≤ max
j

λr1(j)
σ−2

H2
(j)

∑n̄S
i=1 λS(i) + Lσ−2

H2
(j)λ−1

r1 (j)

n̄S∑

i=1

λt1(i)λS(i) = µmax (4.42)

The two-layer bi-section algorithm used to find λF (j) satisfying (4.38) and (4.39)

is shown in Table 4.2.

2. Optimizing {λS(i)} with fixed {λF (j)}:

We fix a group of λF (j), j = 1, 2, · · · , n̄F , then optimization problem in (4.33) can

be transformed as

min
{λS(i)}

−
n̄S∑

i=1

n̄F∑

j=1

λt1(i)λF (j)λr1(j)λS(i)
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
(4.43)

s.t.

n̄S∑

i=1

λS(i)
λt1(i)

≤ PS

n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1

λS(i) + L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

≤ PR
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It can be observed that the above optimization problem has two energy constraints.

Therefore the Lagrange function is

LS = −
n̄S∑

i=1

n̄F∑

j=1

λt1(i)λF (j)λr1(j)λS(i)
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
+ µ1

[
n̄S∑

i=1

λS(i)
λt1(i)

− PS

]
(4.44)

+µ2




n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1

λS(i) + L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

− PR




The derivative of LS with respect to λS(i) is

∂LS

∂λS(i)
= −

n̄F∑

j=1

λt1(i)λF (j)λr1(j)[λF (j)λ−1
r1(j) + 1]

[
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
]2 + µ1λ

−1
t1

(i) + µ2

n̄F∑

j=1

λF (j)
σ2

H2
(j)

(4.45)

According to KKT conditions, there are three possibilities:

• Possibility 1:

n̄F∑

j=1

λt1(i)λF (j)λr1(j)[λF (j)λ−1
r1

(j) + 1]
[
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
]2 =

µ1

λt1(i)
+ µ2

n̄F∑

j=1

λF (j)
σ2

H2
(j)

(4.46)

n̄S∑

i=1

λS(i)
λt1(i)

< PS

n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1

λS(i) + L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

= PR

µ1 = 0

µ2 > 0
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• Possibility 2:

n̄F∑

j=1

λt1(i)λF (j)λr1(j)[λF (j)λ−1
r1

(j) + 1]
[
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
]2 =

µ1

λt1(i)
+ µ2

n̄F∑

j=1

λF (j)
σ2

H2
(j)

(4.47)

n̄S∑

i=1

λS(i)
λt1(i)

= PS

n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1

λS(i) + L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

< PR

µ1 > 0

µ2 = 0

• Possibility 3:

n̄F∑

j=1

λt1(i)λF (j)λr1(j)[λF (j)λ−1
r1

(j) + 1]
[
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
]2 =

µ1

λt1(i)
+ µ2

n̄F∑

j=1

λF (j)
σ2

H2
(j)

(4.48)

n̄S∑

i=1

λS(i)
λt1(i)

= PS

n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1

λS(i) + L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

= PR

µ1 > 0

µ2 > 0

As the optimization problem in (4.43) is convex. There exists a solution that

satisfies one of the three possibilities. We can try the first two possibilities by using two

layers of 1-D bi-section search, which is similar to the algorithm shown in Table 4.2. If for

the first two possibilities no solution is found, we then try Possibility 3. The latter involves

a 2-D search of µ1 and µ2. But for each given pair of the values of µ1 and µ2, we do the

same 1-D bi-section search for λS(i) for each i.
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Let

hi (λS(i)) =
n̄F∑

j=1

λt1(i)λF (j)λr1(j)[λF (j)λ−1
r1

(j) + 1]
[
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
]2 , i = 1, 2 · · · , n̄S (4.49)

fa(λS) =
n̄S∑

i=1

λS(i)
λt1(i)

(4.50)

fb(λS) =
n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1

λS(i) + L

n̄F∑

j=1

λF (j)
σ2

H2
(j)λr1(j)

(4.51)

where λS = [λS(1), λS(2), · · · , λS(n̄S)]T .

• 1-D Bi-section search for Possibility 1 and Possibility 2

Take Possibility 1 for example, it is expressed as follows:

hi (λS(i)) = µ2

n̄F∑

j=1

λF (j)
σ2

H2
(j)

(4.52)

fa(λS) < PS

fb(λS) = PR

As the range of µ2 is

0 ≤ µ2 ≤ max
i

λt1(i)

∑n̄F
j=1

λr1 (j)λF (j)

λ−1
r1

(j)λF (j)+1∑n̄F
j=1 σ−2

H2
λF (j)

(4.53)

And the range of λS(i) is

0 ≤ λS(i) ≤ PR − L
∑n̄F

j=1 σ−2
H2

(j)λ−1
r1

λF (j)
∑n̄F

j=1 σ−2
H2

(j)λF (j)
(4.54)

Therefore a two-layer bi-section algorithm can be used to find λS(i), i = 1, 2, · · · , n̄S .

For Possibility 2, λS(i) can be found in a similar manner.
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• 2-D search combined with 1-D bi-section for Possibility 3

Possibility 3 can be written as

hi (λS(i)) =
µ1

λt1(i)
+ µ2

n̄F∑

j=1

λF (j)
σ2

H2
(j)

(4.55)

fa(λS) = PS

fb(λS) = PR

The algorithm we proposed to solve (4.55) involves two steps:

– step 1: 2-D search for µ1 and µ2

– step 2: 1-D bi-section search for each given pair of µ1 and µ2

Step 1:

In the 2-D search for µ1 and µ2, we first identify the ranges of µ1 and µ2. Secondly,

we choose a resolution and divide the 2-D area into small grids. Finally, we start with

a pair of µ1 and µ2 within the grid and apply gradient method to find a better pair

of µ1 and µ2 resulting in a local optimum. It is worth noticing that if the resolution

is small enough, a global optimum is guaranteed.

The ranges of µ1 and µ2 are respectively

0 < µ1 ≤ λ2
t1(i)

n̄F∑

j=1

λr1(j)λF (j)
λ−1

r1 (j)λF (j) + 1
= µmax

1 (4.56)

0 < µ2 ≤

λt1(i)

n̄F∑

j=1

λr1(j)λF (j)
λ−1

r1 (j)λF (j) + 1
− µ1λ

−1
t1

(i)


 (4.57)

·



n̄F∑

j=1

σ−2
H2

(j)λF (j)



−1

= µmax
2
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For the gradient method, let the cost function be

J(µS) = [fa(λS)− PS ]2 + [fb(λS)− PR]2 (4.58)

Then the conditions are transformed to a unconstrained optimization problem

min
µS

J(µS) = [fa(λS)− PS ]2 + [fb(λS)− PR]2 (4.59)

where µS = [µ1, µ2]T . λS , µ1 and µ2 are related by hi (λS(i)) = µ1

λt1 (i)+µ2
∑n̄F

j=1
λF (j)
σ2

H2
(j)

.

The gradient is

∂J(µS)
∂µS

= [fa(λS)− PS ]2
∂fa(λS)

∂µS

+ [fb(λS)− PR]2
∂fb(λS)

∂µS

(4.60)

1. ∂fa(λS)
∂µS

:

As

∂fa(λS)
∂µS

=
n̄S∑

i=1

λ−1
t1

∂λS(i)
∂µS

=
n̄S∑

i=1

λ−1
t1




∂λS(i)
∂µ1

∂λS(i)
∂µ2


 (4.61)

Recall that

hi (λS(i)) =
µ1

λt1(i)
+ µ2

n̄F∑

j=1

λF (j)
σ2

H2
(j)

(4.62)

Take derivative of µ1 and µ2 on both sides of the equation respectively, we have

∂hi(λS(i))
∂λS(i)

∂λS(i)
∂µ1

= λ−1
t1

=⇒ ∂λS(i)
∂µ1

= λ−1
t1

[
∂hi(λS(i))

∂λS(i)

]−1

(4.63)

∂hi(λS(i))
∂λS(i)

∂λS(i)
∂µ2

=
n̄F∑

j=1

λF (j)
σ2

H2

=⇒ ∂λS(i)
∂µ2

=
n̄F∑

j=1

λF (j)
σ2

H2

[
∂hi(λS(i))

∂λS(i)

]−1

(4.64)

where ∂hi(λS(i))
∂λS(i) is

∂hi(λS(i))
∂λS(i)

= −2λt1(i)
n̄F∑

j=1

λ2
F (j)λr1(j)

[
λF (j)λ−1

r1
(j) + 1

]
[
λF (j)λS(i) + λF (j)λ−1

r1 (j) + 1
]3 (4.65)
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2. ∂fb(λS)
∂µS

:

∂fb(λS)
∂µS

=
n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1

∂λS(i)
∂µS

=
n̄F∑

j=1

λF (j)
σ2

H2
(j)

n̄S∑

i=1




∂λS(i)
∂µ1

∂λS(i)
∂µ2


 (4.66)

With (4.60) and the initialization from grid method, µk
S is updated as

µk+1
S = µk

S − γmk
∂J(µS)

∂µS

(4.67)

where mk is given by Armijo rules. mk is the minimal nonnegative integer that satisfies

the following inequality

J(µk+1
S )− J(µk

S) ≤ −σγmk

(
∂J(µS)

∂µS

)H ∂J(µS)
∂µS

(4.68)

where σ and γ are constants. According to [119], σ is often chosen close to zero,

for example, σ ∈ [10−5, 10−1]. A proper choice of γ is usually from 0.1 to 0.5. The

convergence criterion of the gradient algorithm can be chosen as maxabs(µk+1
S −µk

S) ≤

ε where maxabs(·) denotes the maximal absolute value of each element of a vector,

and ε is a positive constant close to 0.

As the unconstrained optimization problem (4.59) is non-convex, we choose a proper

resolution to sample µ1 and µ2. Then we take each pair of µ1 and µ2 sample as initial

point for gradient iteration. Then we find a local optimum to minimize the objective

function. For all pairs of the initializations, we find the one results in the minimal

objective function. If the resultant value of cost function is small enough (close to

zero), then λS = [λS(1), · · · , λS(n̄S)]T is found. If not, we can always reduce the

resolution and repeat the process again.
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Step 2:

For a given pair of µ1 and µ2, 1-D bi-section method can be used to find a group of

λS(i), i = 1, 2 · · · , n̄S .

4.4.6 Optimal Diagonal Components of the Trainings: A Special Case

In this section, we will propose an algorithm to find the energy allocation for

training and relay matrices when Ct1 = βI,Cr1 = αI. The motivation behind this is that

when Cr1 = αI, the optimal structures of training and relay matrices are guaranteed. And

when Ct1 = βI, either the two constraints in (4.43) are equivalent or only one of them is

active (where equality holds for optimal solution). It will be shown next that the algorithm

to find the power allocation can be greatly simplified when Ct1 = βI.

When Ct1 = βI,Cr1 = αI, the optimal structures of training and relay matrices

in Theorem 2 are respectively

ST
S,opt =

1√
β

Λ1/2
S = Λ1/2

1 , Fopt = VH2Σ
−1
H2

Λ1/2
F = VH2Λ

1/2
2 (4.69)

Instead of finding λS(i) and λF (j), we find λ1(i) = 1
β λS(i) and λ2(j) = σ−2

H2
(j)λF (j).

With the optimal training and relay matrices structures suggested in Theorem 2,

the optimization problem in (4.22) can be written as

min
Λ1,Λ2

−tr

{[
(βΛ1 +

1
α
I)⊗ ΣH2Λ2ΣH

H2
+ I

]−1 (
β2Λ1 ⊗ αΣH2Λ2ΣH

H2

)
}

(4.70)

s.t. tr {Λ1} ≤ PS

tr

{
(βΛ1 +

1
α
I)⊗ Λ2

}
≤ PR
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Let Λ1 ⊗ I = Λ̄1, I ⊗ Λ2 = Λ̄2 and I ⊗ ΣH2 = Σ̄H2 the optimization problem

transforms to

min
Λ̄1,Λ̄2

−tr

{(
βΛ̄1Σ̄H2Λ̄2Σ̄H

H2
+

1
α

Σ̄H2Λ̄2Σ̄H
H2

+ I
)−1

Λ̄1Σ̄H2Λ̄2Σ̄H
H2

}
(4.71)

s.t. tr
{
Λ̄1

} ≤ n̄F PS

tr

{
(βΛ̄1 +

1
α
I)Λ̄2

}
≤ PR

Let λ̄1(k), λ̄2(k) and σ̄2
H2

(k), i = k, · · · , n̄Sn̄F be the ith diagonal element of Λ̄1, Λ̄2 and

|Σ̄H2 |2 respectively. Therefore, the optimization problem becomes

min
{λ̄1(k)},{λ̄2(k)}

−
n̄S n̄F∑

k=1

σ̄2
H2

(k)λ̄1(k)λ̄2(k)

βσ̄2
H2

(k)λ̄1(k)λ̄2(k) + 1
α σ̄2

H2
(k)λ̄2(k) + 1

(4.72)

s.t.

n̄S n̄F∑

k=1

λ̄1(k) ≤ n̄F PS

n̄S n̄F∑

k=1

(βλ̄1(k) +
1
α

)λ̄2(k) ≤ PR

To simplify the optimization problem above, we let

bk = σ̄2
H2

(k) (4.73)

xk = λ̄1(k) (4.74)

yk = λ̄2(k)(βλ̄1(k) +
1
α

) (4.75)

Therefore, above optimization problem can be written in the form

min
{xk},{yk}

K∑

k=1

− xk
1
α + βxk

bkyk

1 + bkyk
(4.76)

s.t.
K∑

k=1

xk ≤ n̄F PS

K∑

k=1

yk ≤ PR
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Optimization problem (4.76) is nonconvex with respect to xk, yk, k = 1, 2, · · · ,K.

However, it is conditional convex if we fix either xk, k = 1, 2, · · · ,K or yk, k = 1, 2, · · · ,K.

Hence we can use an alternating algorithm to obtain a local optimal solution. Specifically, we

fix yk, k = 1, 2, · · · ,K, and let qk = bkyk
1+bkyk

, k = 1, 2, · · · ,K with yk satisfying
∑K

k=1 yk = PR.

Then we solve the convex problem

min
{xk}

K∑

k=1

−qk
xk

1
α + βxk

(4.77)

s.t.
K∑

k=1

xk ≤ n̄F PS

The above convex problem can be solved using Lagrange multiplier method and has a

water-filling type solution.

The Lagrange function is

Lx =
K∑

k=1

−qk
xk

1
α + βxk

+ µx

(
K∑

k=1

xk − n̄F PS

)
(4.78)

The derivative of Lx with respect to xk is

∂Lx

∂xk
= −

1
αqk

(1 + xk)2
+ µx (4.79)

Let ∂Lx
∂xk

= 0, the water-filling type solution is

x∗k =




√
1
αqk

µx
− 1




+

(4.80)

where [x]+ = max(x, 0) and µx is the Lagrange multiplier satisfying
∑K

k=1 xk = n̄F PS .

The process of solving (4.77) is shown in the Table 4.3.

Similarly, we fix xk, k = 1, 2, · · · ,K, and let pk = xk
1
α

+βxk
, k = 1, 2, · · · ,K with xk
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satisfying
∑K

k=1 xk = n̄F PS . Then we solve the convex problem

min
{yk}

K∑

k=1

−pk
bkyk

1 + bkyk
(4.81)

s.t.
K∑

k=1

yk ≤ PR

The above convex problem can be solved using Lagrangian multiplier method and has a

water-filling type solution.

y∗k =
1
bk

[√
bkpk

µy
− 1

]+

(4.82)

where µy is the Lagrangian multiplier satisfying
∑K

k=1 yk = PR.

Since the conditional update of xk or yk by fixing the other, may either decrease or

maintain but can not increase the MSE, monotonic convergence of {xk, yk} follows directly

from this observation. It is worth noticing that once a local optimum is reached, the

updating process will terminate. Therefore, the alternating algorithm will achieve locally

optimal solution. However, the alternating algorithm is subject to low complexity and fast

convergence. The alternating algorithm to obtain local minimum is shown in Table 4.4.

Once a local optimum is obtained, the diagonal of Λ̄1 and Λ̄2 are given by

λ̄1(k) = xk (4.83)

and

λ̄2(k) =
yk

1
α + βxk

(4.84)

An example of this special case is the uncorrelated MIMO channel. When α =

1, β = 1, Ct1 = Cr1 = I, H1 is an uncorrelated MIMO channel. Then two-layered bi-section

algorithm shown in Table 4.4 can be used to find a local optimal solution.
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4.5 Numerical Results

In this section, we present some numerical examples to illustrate the performance

of our proposed algorithm. We assume PS = PR = P and nS = nR = nD = L = N . We

define a correlation matrix Cρ with [Cρ]i,j = ρ|i−j| where ρ is the normalized correlation

coefficient with magnitude |ρ| < 1 [120]. We also define the normalized MSE of H1 and H2

as EH2
[J ′1]

N2 and J ′2
N2 , respectively. The average over H2 is computed by using 100 realizations

of H2.

Fig. 4.2 compares the normalized MSE of H1 between “optimal source and relay

trainings” and “orthogonal source and relay trainings”, where H1 = W1, H2 = W2 and

N = 4. For orthogonal trainings, we use SS =
√

PS
nS

I and F =
√

PR
(PS+nS)nR

I. Here, both SS

and F have orthogonal columns. As expected, the optimal trainings yield a better accuracy

than the orthogonal trainings.

From (4.21), we can see that the channel correlation of both H1 and H2 (Ct1 ,

Cr1 ,Ct2 , Cr2) will impact the MSE of H1. In the following, Fig. 4.3 and Fig. 4.4 will

illustrate how the channel correlation of H1 and H2 impact the MSE of H1 differently.

Generally speaking, MSE of H1 achieves better performance when H1 is strongly correlated

and H2 is weakly correlated.

Fig. 4.3 illustrates the normalized MSE of H1 with the optimal source and relay

trainings, where H1 = W1 and H2 = C1/2
ρ W2C

1/2
ρ with ρ = 0.2 (weak correlation) and

ρ = 0.8 (strong correlation). We can see from Fig. 4.3, as H2 becomes strongly correlated,

the MSE of H1 degrades, with the difference in performance being more apparent in high

energy constraint region. We can also observe that with the increase of N , the gap between

95



5 10 15 20 25 30
10−3

10−2

10−1

100

P (dB)

N
or

m
al

iz
ed

 M
SE

 o
f H

1 

 

 

orthogonal training
optimal training

Figure 4.2: Normalized MSE of H1 with optimal trainings and orthogonal trainings.

the performances of weakly correlated H2 and strongly correlated H2 becomes larger.

Fig. 4.4 illustrates the normalized MSE of H1 with the optimal source and relay

trainings, where H2 = W2 and H1 = C1/2
ρ W1C

1/2
ρ with ρ = 0.2 (weak correlation) and

ρ = 0.8 (strong correlation). Different from Fig. 4.3, Fig. 4.4 shows that with H1 getting

strongly correlated, the MSE of H1 improves, with the performance gap more obvious in low

energy constraint region. We can also observe that with the increase of N , the gap between

the performances of weakly correlated H1 and strongly correlated H1 becomes larger.

Fig.4.5 compares the normalized MSE of H1 and that of H2, where H1 = W1 and

H2 = W2. We see that the estimation accuracy of H2 is much higher than that of H1,

which is expected. Recall that the estimation of H2 in phase 1 is based on a single-hop link
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Figure 4.3: Normalized MSE of H1 where H1 is uncorrelated and H2 is correlated with the
correlation factor ρ.

while the estimation of H1 in phase 2 is based on a two-hop relay system where the relay

only does ”amplify and forward”. The high accuracy of H2 is in fact important for the

estimation of H1 in phase 2 where H2 is assumed to be known. Also note that the method

shown in this paper does not have the ambiguity problem suffered by those in [26] and [27].

4.6 Conclusion

In this paper, we have proposed a two-phase LMMSE-based channel estimation

method for a two-hop AF MIMO relay system. In phase 1, the relay-to-destination channel

is estimated for which the relay sends out a source training matrix. In phase 2, the source-

to-relay channel is estimated for which the source sends out a source training matrix and
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Figure 4.4: Normalized MSE of H1 where H1 is correlated with the correlation factor ρ and
H2 is uncorrelated.

the relay applies a relay training matrix. For phase 1, an optimal design of the source

training has been presented, the result of which is similar to one in [25] while our approach

based on generalized KKT conditions provides a complementary perspective. For phase 2,

an optimal joint design of the source and relay trainings has been developed, which is a

much harder problem than in phase 1. The two-phase channel estimation scheme shown in

this paper does not have the ambiguity problem suffered by the schemes in [26] and [27].

The two-phase scheme can be extended to an M -phase scheme for an M -hop AF

relay system. If all nodes are indexed sequentially with the source node being node 0 and

the destination node being node M , then in phase m the channel matrix between node

M −m and node M −m+1 is estimated for which node M −m sends out a source training
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Figure 4.5: Normalized MSE of H2 estimated in phase 1 and the normalized MSE of H1

estimated in phase 2.

matrix, all other down-stream nodes (except node M) sends out relay training matrices

and the channel matrices between the adjacent down-stream nodes can be assumed to be

known. But a problem with such a scheme is that the estimation errors for the down-

stream channels will accumulate and affect the estimation of their upper-stream channels.

In practice, such a scheme can be useful only if SNR for each link is sufficiently high.
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Table 4.2: Two-layer Bisection Algorithm to Calculate λF (j)

1. initialization:
µ: µmin = 0, µmax

λF :
λmin

F (j) = 0, λmax
F (j) = λmax

F , j = 1, · · · , n̄F

2. two loop bi-section:
outer loop:
µmid = 1

2(µmin + µmax)
while (µmid 6= µmin and µmid 6= µmax)

for j = 1 : n̄F

inner loop:
λmid

F (j) = 1
2 [λmin

F (j) + λmax
F (j)]

while (λmid
F (j) 6= λmin

F (j) and λmid
F (j) 6= λmax

F (j))
if gj(λmid

F (j)) < µmid
[
σ−2

H2
(j)

∑n̄S
i=1 λS(i) + Lσ−2

H2
(j)λ−1

r1
(j)

]

λmax
F (j) = λmid

F (j)
else

λmin
F (j) = λmid

F (j)
endif
λmid

F (j) = 1
2 [λmin

F (j) + λmax
F (j)]

endwhile
λ∗F (j) = λmid

F (j)
endfor
if f(λ∗F ) < PR

µmax = µmid

else
µmin = µmid

endif
µmid = 1

2(µmin + µmax)
endwhile

3. λopt
F (j) = λ∗F (j), j = 1, · · · , n̄F
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Table 4.3: Bisection Algorithm to Calculate {x∗k}
1. initialization:
µx: µmin

x = 0, µmax
x = maxk

1
αqk

2. loop:
µmid

x = (µmax
x + µmin

x )/2
while (µmid

x 6= µmin
x and µmid

x 6= µmax
x )

xk =

[√
1
α

qk

µmid
x

− 1

]+

, for k = 1, 2, · · · ,K

if
∑K

k=1 xk < n̄F Ps

µmax
x = µmid

x

else
µmin

x = µmid
x

endif
µmid

x = (µmax
x + µmin

x )/2
endwhile

3. x∗k = xk
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Table 4.4: Alternating Algorithm to Find Local Optimum {xk
lopt, y

k
lopt}

1. initialization:
y0

k →
∑K

k=1 y0
k = PR

q0
k = bky0

k

1+bky0
k

flag=1, i = 0

2. Loop:
while flag

i = i + 1

xi
k =

[√
1
α

qi−1
k

µi
x

− 1

]+

using bi-section algorithm

pi
k = xi

k
1
α

+βxi
k

MSE1 = fMSE(xi
k, y

i−1
k )

yi
k = 1

bk

[√
bkpi

k

µi
y
− 1

]+

using bi-section algorithm

qi
k = bkyi

k

1+bkyi
k

MSE2 = fMSE(xi
k, y

i
k)

if |MSE1 −MSE2| < ε
flag=0

endif
endwhile

3. xk
lopt = xi

k, y
k
lopt = yi

k
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Chapter 5

Conclusion

In this dissertation, we have first reviewed the state-of-art of multihop relay trans-

mission. Descriptions of the transmission mechanism have been presented and performances

such as diversity, capacity and DMT have been compared. Then we have addressed two

critical challenges in multihop relay networks.

The first challenge we have addressed is multihop transmission and power schedul-

ing. We have proposed a DPC based multihop transmission strategy . By taking advantage

of DPC, we have additional freedom to optimize over power scheduling and rate allocation

to realize the goal of power saving and power balance. A general gradient projection method

has been proposed to solve the optimization problem for networks where both single an-

tennas and multiple antennas can be equipped in each node. Some useful properties have

been explored to realize fast computation. An alternative subgroup method has also been

provided to reach a tradeoff between performance and complexity when the network size

becomes large. Our proposed method has achieved better power saving and power balance
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performances compared with existing schemes.

The second challenge we have addressed is MIMO relay channel estimation and

training design. We have proposed a two-phase LMMSE-based channel estimation method

for a two-hop AF MIMO relay system. In phase 1, the relay-to-destination channel is

estimated for which the relay sends out a source training matrix. In phase 2, the source-to-

relay channel is estimated for which the source sends out a source training matrix and the

relay applies a relay training matrix. For phase 1, an optimal design of the source training

has been presented, the result of which is similar to one in [25] while our approach based

on generalized KKT conditions provides a complementary perspective. For phase 2, an

optimal joint design of the source and relay training matrices has been developed, which is

a much harder problem than in phase 1. The two-phase channel estimation does not have

the ambiguity problem suffered by the schemes in [26] and [27]. The two-phase scheme can

be extended to an M -phase scheme for an M -hop AF relay system.

The research work presented in this dissertation has advanced the state-of-the-

art in wireless multihop relay networks and brought us closer to realizing the vision of

ubiquitous multihop wireless networks.
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Appendix A

Proof of Optimal Trainings for

Phase 1

Denote the eigenvalue decompositions (EVD) of Ct2 and Cr2 as Ct2 = Ut2Λt2U
H
t2

and Cr2 = Ur2Λr2U
H
r2

with descending eigenvalues. We can then write C
1
2
t2

= Ut2Λ
1/2
t2

and

C
1
2
r2 = Ur2Λ

1/2
r2 . We also write C0 = C1 ⊗ C2 = Λ1 ⊗ Λ2. If C0 = I, both Λ1 and Λ2

are the identity matrices. If C0 = C
H
2
t2

C
1
2
t2
⊗C

H
2
r2 C

1
2
r2 , we have equivalently Λ1 = Λt2 and

Λ2 = Λr2 .

It then follows from (4.12) that

L
.= J ′2 + µ · tr(CSR

)

= tr

{
(Λ1 ⊗Λ2)

[
I + Λ1/2

t2
UH

t2CSR
Ut2Λ

1/2
t2

⊗Λr2

]−1
}

+ µ · tr(CSR
)

=
nD∑

i=1

λ2(i)tr
{
Λ1

(
I + λr2(i)Λ

1/2
t2

CΛ1/2
t2

)−1
}

+ µ · tr(C) (A.1)

where C = UH
t2CSR

Ut2 , which has not yet been shown to be diagonal.

115



It follows from the generalized KKT conditions that the solution to (4.13) satisfies

the sufficient and necessary conditions: ∂L
∂CH ≥ 0, C ≥ 0, µ > 0 and tr(C) = PR, which is

easy to prove by using (5.95) in [117].

To derive ∂L
∂CH , we will use ∂(AXB) = A∂XB, ∂(X−1) = −X−1∂XX−1 and

tr(AB) = tr(BA). Then, we have

∂L = −
nD∑

i=1

λ2(i)tr
{
Λ1/2

t2

(
I + λr2(i)Λ

1/2
t2

CΛ1/2
t2

)−1
Λ1

(
I + λr2(i)Λ

1/2
t2

CΛ1/2
t2

)−1
(A.2)

λr2(i)Λ
1/2
t2

∂C
}

+ µ · tr(∂C)

Recall that if ∂L = tr(A∂X), then ∂L
∂XH = A [19]. Therefore,

∂L

∂CH
= −

nD∑

i=1

λ2(i)Λ
1/2
t2

(
I + λr2(i)Λ

1/2
t2

CΛ1/2
t2

)−1
(A.3)

Λ1

(
I + λr2(i)Λ

1/2
t2

CΛ1/2
t2

)−1
λr2(i)Λ

1/2
t2

+ µI

It is easy to observe from (A.3) that for any µ > 0, there is always a diagonal

C ≥ 0 such that ∂L
∂CH ≥ 0. Therefore, the optimal C is diagonal.

Let C = diag(c(1), · · · , c(nR)) ≥ 0. It follows from (A.3) that for all j =

1, 2, · · · , nR,

(
∂L

∂CH

)

j,j

= µ− λ1(j)λt2(j)
nD∑

i=1

λ2(i)λr2(i)
[1 + λr2(i)λt2(j)c(j)]

2 ≥ 0 (A.4)

where µ > 0 is such that tr(C) = PR.
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Appendix B

Proof of Theorem 1

From (4.28), (4.29), and (4.30), it is obvious that the cost and the constraints in

the problem (4.22) is invariant to US and hence any unitary US is optimal.

To prove the optimality of the choice of QS = I, we need the following definitions

and lemmas from [118].

DEFINITION 1 [20, 1.A.1]: Consider any two real-valued N × 1 vectors x, y, and

let x[1] ≥ x[2] ≥ · · · ≥ x[N ] and y[1] ≥ y[2] ≥ · · · ≥ y[N ] denote the elements of x and y,

respectively, sorted in decreasing order. Then x is said to be majorized by y, denoted as

x ≺ y, if
∑n

i=1 x[i] ≤
∑n

i=1 y[i], n = 1, 2, · · · , N − 1 and
∑N

i=1 x[i] =
∑N

i=1 y[i].

DEFINITION 2 [20, 1.A.2]: Using the same notations as in DEFINITION 1, x

is said to be weakly majorized by y, denoted as x ≺w y, if
∑n

i=1 x[i] ≤
∑n

i=1 y[i], n =

1, 2, · · · , N .

LEMMA 1 [20, 9.H.1.h]: For two N ×N positive semidefinite Hermitian matrices

A and B with eigenvalues λa,i and λb,i, i = 1, · · · , N , arranged in the descending order
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respectively, it follows that tr(AB) ≥ ∑N
i=1 λa,iλb,N+1−i.

LEMMA 2 [20, 9.B.1]: For a Hermitian matrix A with the vector d[A] of its

main diagonal elements (in descending order for convenience) and the vector λ[A] of its

eigenvalues (in descending order for convenience), it follows that d[A] ≺ λ[A].

LEMMA 3 [20, 9.H.2]: For m N ×N complex matrices A1,A2, · · · ,Am, let B =

A1A2 · · ·Am, then σb ≺w σa1 ¯ σa,2 ¯ · · · ¯ σa,m, where σb and σa,i, i = 1, · · · ,m, denote

N × 1 vectors containing the singular values of B and Ai arranged in the same order,

respectively, and ¯ denotes the Schur (element-wise) product of two vectors.

LEMMA 4 [20,3.A.8]: For a real-valued function f , x ≺w y implies f(x) ≤ f(y)

if and only if f is increasing with respect to each variable and Schur-convex.

Recall that among the two constraints in the problem (4.22), only the first, or

equivalently (4.29), depends on QS . From LEMMA 1, we have

tr[ΛSQSΛ−1
t1

QH
S ] = tr[ΛS(QSΛ−1

t1
QH

S )] ≥ tr[ΛSΛ−1
t1

] (B.1)

where the equality holds when QS = I. Namely, for any given ΛS , the source consumes the

least amount of power when QS = I.

For the cost J ′1 in (4.22), let us define

X =
(
ΛS ⊗ΛF + I⊗Λ

1
2
FQFΛ−1

r1
QH

F Λ
1
2
F + I

)−1

(I⊗Λ
1
2
FQFΛr1Q

H
F Λ

1
2
F )

Y = Λ
1
2
SQSΛt1Q

H
S Λ

1
2
S ⊗ I

Then, from (4.28),

J ′1 − tr[Ct1 ⊗Cr1 ] = −tr[XY] (B.2)

where X depends on QF , and Y depends on QS .
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It follows from LEMMA 2 and LEMMA 3 that

d[XY] ≺ λ[XY] ≺w λ[X]¯ λ[Y] (B.3)

It is known [118] that λ[A] ≺w λ[A′] implies λ[A⊗ I] ≺w λ[A′⊗ I], and λ[B] ≺w

λ[B′] implies λ[A] ¯ λ[B] ≺w λ[A] ¯ λ[B′]. It then follows that λ[Y] ≺w λ[Y′] where

Y′ = Λ
1
2
SΛt1Λ

1
2
S ⊗ I which is Y when QS = I. Furthermore,

d[XY] ≺ λ[XY] ≺w λ[X]¯ λ[Y′] (B.4)

Since tr(·) is increasing and Schur-convex function of d[XY], from LEMMA 4, we

have

tr(XY) ≤ tr(Λ[X]Λ[Y′]) (B.5)

where Λ[X] and Λ[Y′] are diagonal matrices with the elements of λ[X] and λ[Y′] being

their diagonal values, respectively. From (B.2) and (B.5), J ′1 is minimized when QS = I.

The above discussions show that when QS = I, the source consumes the least

amount of power and J ′1 is minimized. Therefore, we reach the conclusion that QS = I is

optimal.
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Appendix C

Proof of Theorem 2

It is easy to observe from (4.28), (4.29) and (4.30) that when Cr1 = αI or equiv-

alently Λr1 = αI, the cost function and both constraints in (4.22) are invariant to QF .

Therefore, any unitary QF is optimal.

We know from (4.28) and (4.29) that the cost and the first constraint of (4.22)

are invariant to UF . Using Cr1 = αI and LEMMA 1, the left hand side of (4.30) can be

written as

tr {ΛS} tr
{
Σ−2

H2
UH

H2
UFΛFUH

F UH2

}
+

L

α
· tr

{
Σ−2

H2
UH

H2
UFΛFUH

F UH2

}

≥ tr(ΛS)tr(Σ−2
H2

ΛF ) +
L

α
tr(Σ−2

H2
ΛF ) (C.1)

where the lower bound is achieved when UF = UH2 .
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