Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Induced sputum metabolomic profiles and oxidative stress are associated with chronic obstructive pulmonary disease (COPD) severity: potential use for predictive, preventive, and personalized medicine

Abstract

Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease, and metabolomics plays a hub role in predictive, preventive, and personalized medicine (PPPM) related to COPD. This study thus aimed to reveal the role of induced sputum metabolomics in predicting COPD severity. In this pilot study, a total of 20 COPD patients were included. The induced sputum metabolites were assayed using a liquid chromatography-mass spectrometry (LC-MS/MS) system. Five oxidative stress products (myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH), neutrophil elastase (NE), and 8-iso-PGF2α) in induced sputum were measured by ELISA, and the metabolomic profiles were distinguished by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis, and a significant difference in induced sputum metabolomics was observed between moderate and severe COPD. The KEGG analysis revealed that the glycerophospholipid metabolism pathway was downregulated in severe COPD. Due to the critical role of glycerophospholipid metabolism in oxidative stress, significant negative correlations were discovered between glycerophospholipid metabolites and three oxidative stress products (SOD, MPO, and 8-iso-PGF2α). The diagnostic values of SOD, MPO, and 8-iso-PGF2α in induced sputum were found to exhibit high sensitivities and specificities in the prediction of COPD severity. Collectively, this study provides the first identification of the association between induced sputum metabolomic profiles and COPD severity, indicating the potential value of metabolomics in PPPM for COPD management. The study also reveals the correlation between glycerophospholipid metabolites and oxidative stress products and their value for predicting COPD severity.

Supplementary information

The online version contains supplementary material available at 10.1007/s13167-020-00227-w.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View