Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Architected material with independently tunable mass, damping, and stiffness via multi-stability and kinematic amplification

Abstract

We report on a class of architected material lattices that exploit multi-stability and kinematic amplification to independently adjust the local effective mass, damping, and stiffness properties, thereby realizing congruent alterations to the acoustic dispersion response post-fabrication. The fundamental structural tuning element permits a broad range in the effective property space; moreover, its particular design carries the benefit of tuning without altering the original size/shape of the emerging structure. The relation between the tuning element geometry and the achieved variability in effective properties is explored. Bloch's theorem facilitates the dynamic analysis of representative one- and two-dimensional (1D/2D) systems, revealing, e.g., bandgap formation, migration, and closure and positive/negative metadamping in accordance with the tuning element configuration. To demonstrate a utility, we improvise a waveguide by appropriately patterning the tuning element configuration within a 2D system. We believe that the proposed strategy offers a new way to expand the range of performance and functionality of architected materials for elastodynamics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View