- Main
Optimizing the Least Nucleophilic Anion. A New, Strong Methyl+ Reagent
Published Web Location
https://doi.org/10.1021/ja0118800Abstract
The icosahedral carborane anions H-CB11X6H5- (X = Cl, Br, I) are among the most inert, least coordinating, and least basic anions known. These properties are enhanced by 2,3,4,5,6-pentamethylation with methyl triflate. The resulting anions, H-CB11X6Me5-, are more inert than their unmethylated precursors, have improved NMR handles, and their salts have higher solubility in low dielectric media. They sustain superacidity in H(H-CB11X6Me5). Protonated benzene has been isolated and characterized by X-ray crystallography, moving Wheland intermediates from the status of spectroscopically observable transients to weighable reagents. The new anions sustain extreme Lewis acidity in silylium ion-like R3Si(H-CB11X6Me5) species. Treatment of Et3Si(H-CB11Br6Me5) with methyl triflate leads to a new methyl+ reagent CH3(H-CB11Br6Me5) that is more potent than methyl triflate. It methylates benzene without heating or acid catalysis to give the toluenium ion. The H-CB11X6Me5- anions come as close as any to the concept of a univeral weakly coordinating anion and, with cheaper starting materials now available, promise to become specialty chemicals of wide usage.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-