Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Stoichiometric Layered Potassium Transition Metal Oxide for Rechargeable Potassium Batteries

Abstract

K-ion batteries are promising alternative energy storage systems for large-scale applications because of the globally abundant K reserves. K-ion batteries benefit from the lower standard redox potential of K/K+ than that of Na/Na+ and even Li/Li+, which can translate into a higher working voltage. Stable KC8 can also be formed via K intercalation into a graphite anode, which contrasts with the thermodynamically unfavorable Na intercalation into graphite, making graphite a readily available anode for K-ion battery technology. However, to construct practical rocking-chair K-ion batteries, an appropriate cathode material that can accommodate reversible K release and storage is still needed. We show that stoichiometric KCrO2 with a layered O3-type structure can function as a cathode for K-ion batteries and demonstrate a practical rocking-chair K-ion battery. In situ X-ray diffraction and electrochemical titration demonstrate that KxCrO2 is stable for a wide K content, allowing for topotactic K extraction and reinsertion. We further explain why stoichiometric KCrO2 is unique in forming the layered structure unlike other stoichiometric K-transition metal oxide compounds, which form nonlayered structures; this fundamental understanding provides insight for the future design of other layered cathodes for K-ion batteries.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View