Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Neutrino quantum kinetics

Abstract

We present a formulation of the quantum kinetic equations (QKEs), which govern the evolution of neutrino flavor at high density and temperature. Here, the structure of the QKEs is derived from the ground up, using fundamental neutrino interactions and quantum field theory. We show that the resulting QKEs describe coherent flavor evolution with an effective mass when inelastic scattering is negligible. The QKEs also contain a collision term. This term can reduce to the collision term in the Boltzmann equation when scattering is dominant and the neutrino effective masses and density matrices become diagonal in the interaction basis. We also find that the QKEs include equations of motion for a new dynamical quantity related to neutrino spin. This quantity decouples from the equations of motion for the density matrices at low densities or in isotropic conditions. However, the spin equations of motion allow for the possibility of coherent transformation between neutrinos and antineutrinos at high densities and in the presence of anisotropy. Although the requisite conditions for this exist in the core collapse supernova and compact object merger environments, it is likely that only a self-consistent incorporation of the QKEs in a sufficiently realistic model could establish whether or not significant neutrino-antineutrino conversion occurs. © 2014 American Physical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View