Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells

Abstract

Objective

ADAMTS (a disintegrin and metalloproteinase with thrombospondin type-1 motif) zinc metalloproteinases are important during the synthesis and breakdown of cartilage extracellular matrix. ADAMTS-12 is up-regulated during in vitro chondrogenesis and embryonic limb development; however, the regulation of ADAMTS-12 expression in cartilage remains unknown. The transcription factor c-Maf is a member of Maf family of basic ZIP (bZIP) transcription factors. Expression of c-Maf is highest in hypertrophic chondrocytes during embryonic development and postnatal growth. We hypothesize that c-Maf and ADAMTS-12 are co-expressed during chondrocyte differentiation and that c-Maf regulates ADAMTS-12 expression during chondrogenesis.

Design

Promoter analysis and species alignments identified potential c-Maf binding sites in the ADAMTS-12 promoter. c-Maf and ADAMTS-12 co-expression was monitored during chondrogenesis of stem cell pellet cultures. Luciferase expression driven by ADAMTS-12 promoter segments was measured in the presence and absence of c-Maf, and synthetic oligonucleotides were used to confirm specific binding of c-Maf to ADAMTS-12 promoter sequences.

Results

In vitro chondrogenesis from human mesenchymal stem cells revealed co-expression of ADAMTS-12 and c-Maf during differentiation. Truncation and point mutations of the ADAMTS-12 promoter evaluated in reporter assays localized the response to the proximal 315 bp of the ADAMTS-12 promoter, which contained a predicted c-Maf recognition element (MARE) at position -61. Electorphoretic mobility shift assay confirmed that c-Maf directly interacted with the MARE at position -61.

Conclusions

These data suggest that c-Maf is involved in chondrocyte differentiation and hypertrophy, at least in part, through the regulation of ADAMTS-12 expression at a newly identified MARE in its proximal promoter.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View