Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Quantum criticality in the infinite-range transverse field Ising model

Abstract

We study quantum criticality in the infinite range transverse-field Ising model. We find subtle differences with respect to the well-known single-site mean-field theory, especially in terms of gap, entanglement and quantum criticality. The calculations are based on numerical diagonalization of Hamiltonians with up to a few thousand spins. This is made possible by the enhanced symmetries of the model, which divide the Hamiltonian into many block-diagonal sectors. The finite temperature phase diagram and the characteristic jump in heat capacity closely resemble the behavior in mean-field theory. However, unlike mean-field theory where excitations are always gapped, the excitation gap in the infinite range model goes to zero from both the paramagnetic side and from the ferromagnetic side on approach to the quantum critical point. Also, contrary to mean-field theory, at the quantum critical point the quantum Fisher information becomes large, implying long-range multipartite entanglement. We find that the main role of temperature is to shift statistical weights from one conserved sector to another. However, low energy excitations in each sector arise only near the quantum critical point implying that low energy quantum fluctuations can arise only in the vicinity of the quantum critical field where they can persist up to temperatures of order the exchange constant.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View