Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte

Published Web Location

https://doi.org/10.1021/ma501202c
Abstract

A systematic study of the dependence of ionic conductivity on the grain size of a lamellar block copolymer electrolyte was performed. A freeze-dried mixture of poly(styrene)-block-poly(ethylene oxide) and lithium bis(trifluoromethylsulfonyl)imide salt was heated in steps from 29 to 116 °C and then cooled back to 29 °C with an annealing time ranging from 30 to 60 min at each temperature. Grain structure and ionic conductivity during these steps were quantified by in situ small-angle X-ray scattering and ac impedance spectroscopy, respectively. Conductivity depends both on grain structure and temperature. A normalization scheme to decouple the dependence of conductivity on temperature and grain structure is described. Ionic conductivity at a given temperature was found to decrease by a factor of 5.2 ± 0.9 as the SAXS measure of grain size increased from 13 to 88 nm. The fact that in the system studied, large, well-formed lamellar grains are less conducting than poorly defined, small grains suggests a new approach for optimizing the transport properties of block copolymer electrolytes. Further work is necessary to confirm the generality of this finding. © 2014 American Chemical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View