Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Heparin inhibits the attachment and growth of Balb/c‐3T3 fibroblasts on collagen substrata

Abstract

In investigating the role of cell-extracellular matrix interactions in cell adhesion and growth control, the effects of heparin on cell-collagen interactions were examined. Exponentially growing Balb/c-3T3 fibroblasts were radiolabelled with 3H-thymidine and detached from tissue culture surfaces using EDTA, and cell attachment to various types of collagen substrata was assayed in the presence or absence of heparin or other glycosaminoglycans (GAGs) or dextran sulfate (40 K). Cells attached readily (70-90%) to films of types I and V, but not to type III collagen. The number of cells bound to types I and V collagen films was inhibited by 10-50% when heparin was present from 0.1-100 micrograms/ml. Cell-collagen attachment was also inhibited by dextran sulfate, and to a lesser extent by dermatan sulfate, but chondroitin sulfates A and C and hyaluronic acid showed no effect. Heparin was active even at early time points in the adhesion assay, suggesting it may disrupt cell-collagen attachment. To study the effects of heparin in modulating cell growth on collagen, growth arrested cells cultured on type I collagen films were serum stimulated in the presence of heparin or other GAGs for 3 days. Growth was inhibited (greater than 40%) only by heparin and dextran sulfate. Interaction of heparin fragments (Mr less than or equal to 6KD) with type I collagen was analyzed by affinity co-electrophoresis (Lee and Lander, 1991) and showed higher affinity heparin binding to native as compared with denatured collagen. These data suggest that sites within native collagen may mediate Balb cell-collagen and heparin-collagen interactions, and such interactions may be relevant towards understanding heparin's antiproliferative activity in vivo and in vitro.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View