Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Proliferative memory SAMHD1low CD4+ T cells harbour high levels of HIV-1 with compartmentalized viral populations

Abstract

We previously reported the presence of memory CD4+ T cells that express low levels of SAMHD1 (SAMHD1low) in peripheral blood and lymph nodes from both HIV-1 infected and uninfected individuals. These cells are enriched in Th17 and Tfh subsets, two populations known to be preferentially targeted by HIV-1. Here we investigated whether SAMHD1low CD4+ T-cells harbour replication-competent virus and compartimentalized HIV-1 genomes. We sorted memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected patients on anti-retroviral therapy (c-ART) and performed HIV-1 DNA quantification, ultra-deep-sequencing of partial env (C2/V3) sequences and phenotypic characterization of the cells. We show that SAMHD1low cells include novel Th17 CCR6+ subsets that lack CXCR3 and CCR4 (CCR6+DN). There is a decrease of the % of Th17 in SAMHD1low compartment in infected compared to uninfected individuals (41% vs 55%, p<0.05), whereas the % of CCR6+DN increases (7.95% vs 3.8%, p<0.05). Moreover, in HIV-1 infected patients, memory SAMHD1low cells harbour high levels of HIV-1 DNA compared to memory SAMHD1+ cells (4.5 vs 3.8 log/106cells, respectively, p<0.001), while naïve SAMHD1+ showed significantly lower levels (3.1 log/106cells, p<0.0001). Importantly, we show that SAMHD1low cells contain p24-producing cells. Moreover, phylogenetic analyses revealed well-segregated HIV-1 DNA populations with compartmentalization between SAMHD1low and SAMHD1+ memory cells, and limited viral exchange. As expected, the % of Ki67+ cells was significantly higher in SAMHD1low compared to SAMHD1+ cells. There was positive association between levels of HIV-1 DNA and Ki67+ in memory SAMHD1low cells, but not in memory and naïve SAMHD1+ CD4+ T-cells. Altogether, these data suggest that proliferative memory SAMHD1low cells contribute to viral persistence.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View