
UCLA
Papers

Title
EmStar: Development with High System Visibility

Permalink
https://escholarship.org/uc/item/8fg8r34p

Journal
Center for Embedded Network Sensing, 11(6)

Authors
Elson, J
Girod, Lewis
Estrin, D

Publication Date
2004-12-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fg8r34p
https://escholarship.org
http://www.cdlib.org/

IEEE Wireless Communications • December 200470 1536-1284/04/$20.00 © 2004 IEEE

Workstation-class simulator hardware

Simulated node l Simulated node

Sensor Radio

Sensor driver Radio driver

WIRELESS SENSOR NETWORKS

INTRODUCTION
The recent proliferation of small low-power
hardware platforms that integrate sensing, com-
putation, and wireless communication has led to
widespread interest in the design of wireless sen-
sor networks. Such networks are envisioned to
be large-scale dense deployments in environ-
ments where traditional centrally wired sensors
are impractical. For example, ubiquitous wiring
is infeasible for microclimate studies [1, 2],
groundwater contaminant monitoring, precision
agriculture, and condition-based maintenance of
machinery in complex environments.

As sensor network research has moved out of
its infancy, its focus has started to shift away
from short-lived hand-configured tests and
demonstrations. We are seeing the emergence of

real applications: longer-lived, larger-scale sen-
sor systems that are situated in real environ-
ments and collect real data. The drive to deploy
real systems has been slow and difficult; design-
ing software for sensor networks is hard.

The difficulty’s origin is a confluence of fac-
tors. First, sensor networks must have software
that is autonomous and robust despite dynamics
in the system and environment. For example,
topologies must be discovered, not preconfig-
ured; node failures must be automatically detect-
ed, as they cannot be manually repaired. Second,
the dynamics are difficult to predict. Experience
has shown that we learn about the many failure
modes only from in situ deployments; simulation
and analysis are not enough. Third, the con-
strained storage and channel capacity makes it
difficult to collect data from a deployed system
that sheds light on the details of its internal
behavior. This lack of system visibility interferes
with the feedback process that normally drives
system development: design an algorithm, imple-
ment it, observe its behavior, and change the
design based on the analysis.

This article describes EmStar, our PC-based
framework that addresses the difficulties in cre-
ating robust sensor network software. EmStar’s
execution environments address the problem of
visibility into an in situ system. It provides a
spectrum of runtime platforms: pure simulation,
true distributed deployment, and two hybrid
modes that combine simulation with real wire-
less communication and sensors in the environ-
ment. Each of these modes run the same code
and use the same configuration files, allowing
developers to seamlessly iterate between the
convenience of simulation and the reality afford-
ed by physically situated devices.

DESIGN OF AUTONOMOUS SOFTWARE

Sensor networks must be autonomous at a level
required by few other distributed systems. They
are in dramatic contrast to most existing com-
puter systems, which can be designed with the
assumption that users are on hand to solve prob-
lems. A user can exercise judgment about what
to delete if her disk is full. If a network connec-
tion is broken, she can decide how often to try

JEREMY ELSON, MICROSOFT RESEARCH

LEWIS GIROD AND DEBORAH ESTRIN, UCLA CENTER FOR EMBEDDED NETWORKED SENSING

ABSTRACT
Recently, increasing research attention has

been directed toward wireless sensor networks:
collections of small low-power nodes, physically
situated in the environment, that can intelligent-
ly deliver high-level sensing results to the user.
As the community has moved into more com-
plex design efforts — large-scale, long-lived sys-
tems that truly require self-organization and
adaptivity to the environment — a number of
important software design issues have arisen. To
make software robust, we must carefully observe
its behavior and understand its failure modes.
However, many of these failures are not mani-
fested until deployment time. Channel and stor-
age limitations make visibility into a deployed
system difficult, hindering our understanding of
failure modes. Simulation is difficult to apply;
the network’s physical situatedness makes it sen-
sitive to subtleties of sensors and wireless com-
munication channels that are difficult to model.
In this article we describe EmStar, a PC-based
software framework that aims to make develop-
ment easier by improving system visibility.
EmStar’s novel execution environments encom-
pass pure simulation, true in-situ deployment,
and hybrid modes that combine simulation with
real wireless communication and sensors situat-
ed in the environment.

EMSTAR: DEVELOPMENT WITH
HIGH SYSTEM VISIBILITY

EmStar’s novel
execution
environments
encompass pure
simulation, true
in-situ deployment,
and hybrid modes
that combine
simulation with
real wireless
communication and
sensors situated in
the environment.

IEEE Wireless Communications • December 2004 71

again and when to give up, considering the
nature of the failure, cost of the connection, or
importance of the work. She can recognize bugs
in software and adapt the way she works to avoid
encountering them again. She can even cope
with partial hardware failures; for example, she
can send a document to the office printer instead
of using the one at home.

In a sensor network, humans are not in the
loop. Its software must adapt to failures and
unexpected conditions using only the mechanical
intuition built into it by the system designer.
Encoding intuition into software is not easy.
While this may not be a crucial issue for short-
lived demonstrations, it is a stumbling block for
real deployments. As the lifetime of a system
grows, so do the number and variety of unex-
pected situations encountered. Over time, nodes
can run out of energy, produce bad data after
overheating in the sun, be carried away to a new
location by wind, flood the network due to soft-
ware bugs, or be confounded by unusually noisy
sensors. Even in fixed positions, the quality of
radio frequency (RF) communication links (and
thus nodes’ topologies) can change dramatically
due to the vagaries of RF propagation. These
changes are a result of propagation’s strong
environmental dependence and difficult to pre-
dict in advance. In sensor networks, such situa-
tions are the rule rather than the exception.

Unfortunately, experience has taught us that
it is hard to expect the unexpected. When design-
ing a sensor network application, there are many
lessons we learn only from in situ deployments;
simulation and analysis are not enough. To write
robust software, feedback from failures of early
deployment prototypes is crucial. To understand
these failures, we need visibility into a deployed
system.

THE IMPORTANCE OF SYSTEM VISIBILITY

Imagine we want to build a simple network of
temperature sensors that can report the average
room temperature inside a building. We want to
maximize the lifetime and scalability of the net-
work by minimizing the number of energy-con-
suming radio transmissions, so we design the
network to organize itself into a hierarchy. Each
node is programmed to report its temperature
observation to its parent in the aggregation tree.
Internal nodes average the readings of their chil-
dren and forward just a weighted average — but
not all the raw data — up the tree. The node at
the root of the tree is connected to a base sta-
tion, informing the user of the system-wide aver-
age. This scheme scales nicely because only a
single datum is transmitted over each link in the
tree, independent of network size.

Suppose we write a software prototype, load
it on a dozen sensors spread around a room, and
turn it on for the first time. After a few minutes,
an answer pops out: 77 degrees. Is that correct?
How can we tell if the software is working prop-
erly? Was there a bug in our code that performs
time-weighted averaging? Is the spatial aggrega-
tion working? Should we have used a different
filtering algorithm to eliminate noise from the
sensor? Does the average really represent all the
sensors, or did half of them malfunction? Was

the routing hierarchy stable, or constantly in flux
due to variations in link quality? Were packets
lost in routing loops? Unfortunately, all we have
is a single number — 77 degrees. We have no
data to answer these questions.

In many networked systems, the cost of gath-
ering the data needed for analysis and debugging
of a deployed system has a relatively low
marginal cost. An Internet router, for example,
transports billions of data bits every second.
Additional transmission of a few thousand bytes
of system analysis data has a negligible impact.
In sensor network the situation is reversed. Sen-
sor networks are designed to carry very low-rate
data; typical bandwidths are a few kilobits per
second, duty cycles are low, and storage capacity
is limited. Additional data for debugging and
analysis, such as routing tables and link status
matrices, are hundreds of times larger than, for
example, a simple temperature reading. Conse-
quently, it can be impossible to collect such
meta-data from a deployed system without dra-
matically changing the network under observa-
tion. The cost of system visibility is not marginal
as in a router; in sensor networks it dominates.

Low bandwidth and short range are a necessi-
ty in sensor networks because the network has
finite energy, and communication is the primary
consumer of this precious resource [3]. Sensor
nodes and their batteries are both small; in typi-
cal deployments, recharging is infeasible. The
use of local processing, hierarchical collabora-
tion, and domain knowledge to convert data into
increasingly distilled and high-level representa-
tions — data reduction — is key to the energy
efficiency of the system. In general, a perfect sys-
tem will reduce as much data as possible as early
as possible, rather than incur the energy expense
of transmitting raw sensor values further along
the path to the user.

For a system designer, there is an unfortu-
nate paradox intrinsic to this ideal: the data that
must be discarded to meet the energy and chan-
nel capacity constraints are necessary for the
evaluation and debugging of the data reduction
process itself. How can a designer evaluate a sys-
tem where, by definition, the information neces-
sary for the evaluation is not available?

EMSTAR

EmStar is our Linux- or Windows-based frame-
work for developing sensor network software. It
addresses the issue of efficiently gaining experi-
ence with real-world deployments without sacri-
ficing visibility into the system that is crucial for
understanding it.

EmStar provides a diverse set of execution
platforms, ranging from pure simulation to fully
distributed in situ operation. The same code and
configuration files are used on each platform,
making it possible for a developer to move seam-
lessly among the available modes. This is central
to our approach of easing the path from concept
to deployment and back again. EmStar can pro-
vide both the convenience of simulation and the
reality afforded by physically situated devices.

We will describe each point along this spec-
trum in detail, but their character varies chiefly
along two axes, as depicted in Fig. 1:

For a system design-
er, there is an

unfortunate paradox
intrinsic to this ideal:

the data that must
be discarded to meet

the energy and
channel capacity

constraints are
necessary for the

evaluation and
debugging of the

data reduction
process itself.

IEEE Wireless Communications • December 200472

• Scale: The number of nodes in the sensor net-
work and their geographic extent

• Reality: The similarity of the platform, and the
nature of its inputs, to a deployment in the
application’s intended target environment
By definition, the most realistic possible plat-

form is an autonomous wireless sensor network,
including both hardware and software, deployed
in its real environment. In contrast, a pure simu-
lation is not realistic. For example, the behavior
of the communication channel and sensor inputs
are based on models that can never capture the
full complexity of the real world. The range of
hardware failure modes seen in harsh environ-
ments is also difficult to anticipate, and thus dif-
ficult to simulate.

Of course, for a sensor network to be
deployed, it must eventually deal with reality.
Unfortunately, reality imposes significant obsta-
cles to understanding the behavior of the net-
work in detail. Such an understanding is central
to the development of algorithms and software.
The most fundamental problem is the paradox
we described earlier: the network’s raison d’ être
is to filter, reduce, and summarize data in situa-
tions where transmitting complete sensor time-
series to a central location for analysis is
impossible. However, the discarded time-series
are needed to evaluate whether the state of the
environment was accurately reflected by the final
high-level sensing result. A simulation makes
such an analysis possible because it offers com-
plete visibility into a system, allowing the devel-
oper to save every sensor input and the state of
intermediate computations at every node if nec-
essary.

This and other advantages of simulation make
it a vital tool, but it has a critical drawback: its
essential lack of reality can lead developers

astray. Real communication channels in complex
environments (e.g., indoors or in dense foliage)
are notoriously difficult to model accurately [4].
Connectivity is unpredictable and has been
shown to vary significantly on both short and
long timescales. The difference between real and
simulated channels can make it easy to write
software that works only in the simulator. Soft-
ware written in the sheltered environment of a
deterministic channel or in a simulator that has
an overly simplistic noise model often breaks
when exposed to the real world for the first
time.

For example, consider software that reliably
delivers packets to the neighbors within a node’s
local radio range. In a real channel, a transient
environmental effect might allow the delivery of
a few packets from a faraway, normally unreach-
able neighbor. A developer who has never expe-
rienced these dynamics may write software that
permanently adds a node to a neighbor list
whenever a packet is received. This algorithm
may work in a simulator with a deterministic
channel, or with a channel that produces packet
loss on short timescales. In the real channel, a
node will endlessly retransmit packets to a neigh-
bor that will never acknowledge them.

EmStar is, in part, an attempt to balance the
usefulness of a simulator with the need to write
software that works in reality. To this end, we
have implemented a spectrum of execution envi-
ronments that fall on different points in the
scale/reality space shown in Fig. 1. EmStar allows
developers to get the basics of an algorithm
working in a controlled environment (simula-
tion); then understand the effects of both scale
(via a large simulation) and the real environ-
ment (via the ceiling and portable arrays). Code
that has been debugged using all the modes has
a good chance of working in a real-world deploy-
ment, where it must both be scalable and deal
with the effects of the real environment. While
deployed code may not work immediately, an
immense amount of real progress can be made
in a much more friendly environment.

In the following sections we describe each of
EmStar’s execution environments in more detail.

TRUE DISTRIBUTED DEPLOYMENT
In a real deployment, autonomous and unteth-
ered nodes are deployed in a real environment
running a real application. Each node has a low-
power radio and sensors, and runs an EmStar
software stack. The scale of the deployment typi-
cally is limited by the hardware available. In
most of our development, the goal is to reach
this state.

Each component of the EmStar stack is
implemented in a process with its own address
space. The collection of processes is managed by
emrun, which starts each process in the proper
dependency order based on a configuration pro-
vided by the user. In a real deployment, the
stack includes device drivers that provide inter-
faces to real physical channels, such as the net-
work and sensors. Typically, there are several
layers of common services on top of the physical
interfaces, such as sensor calibration, neighbor
discovery, routing and data dissemination proto-
cols, time synchronization, acoustic ranging, and

n Figure 1. The spectrum of EmStar execution environments. Points along the arc
allow high visibility into the system, enabling detailed analysis and improve-
ment of its behavior. By understanding the effects of both scale (via simula-
tion) and the real environment (via the ceiling and portable arrays), developers
are more likely to create software that works properly when deployed on a large
scale in the real world.

Pure simulation
Sc

al
e

Reality

Data replay

Ceiling array

Portable array

Deployment

IEEE Wireless Communications • December 2004 73

3D multilateration. One or more sensor applica-
tions are at the top of the stack (Fig. 2).

If a process terminates unexpectedly (e.g.,
due to a bug), it is automatically restarted; other
modules in the stack can then reconnect to the
failed module without losing their own state.
This provides an important element of robust-
ness in deployed systems where users are not
available to manually recover from errors or
restart failed processes. emrun is also responsible
for configuring the verbosity of debug output of
each process, and collecting the output into a
temporary in-memory buffer. The buffer can be
queried via the network if a high-level error is
observed.

In this configuration, none of the elements of
the system are tethered to an infrastructure,
making true distributed deployment possible.
However, as discussed earlier, this same proper-
ty makes the system difficult to control, observe,
and debug. In addition, using real hardware has
many logistical hurdles: programming, power,
packaging, the coupling of sensors to the envi-
ronment, and other hardware vagaries combine
to add a lot of noise to the experimental process
when dealing with a large number of nodes. In
the early stages of an application’s development,
it is an obfuscating distraction that prevents
developers from focusing on the essence of the
problem at hand. Parallel work by multiple
developers is also difficult; most laboratories do
not have enough deployable hardware for more
than one developer to simultaneously test a
large-scale deployment.

PURE SIMULATION
At the other end of the platform spectrum is
emsim, a pure simulation environment. In this
mode, multiple copies of emrun are started, each
of which launches a copy of the same stack that
is run in a real deployment. Each instance repre-
sents one simulated node, and is run in its own
sandbox. As in reality, the nodes must interact
via the “environment” and are not allowed to
share state directly. Instead of using real radios
and sensors, emsim provides a channel simulator
that models the (simplified) behavior of the
environment, based on a simulator configuration
that defines aspects of the nodes such as their
position and radio power. The channel simulator
provides interfaces that match those of the real
device drivers (Fig. 3). The same services and
applications can therefore run unchanged using
the simulated device drivers.

Because the simulated and real platforms
both run the same user code, read the same con-
figuration files, and provide the same interfaces
to the operating system and physical devices,
developers are forced to think through and
implement every detail of their algorithms early
in the development process. Unlike more tradi-
tional simulators, developers are prevented from
taking shortcuts or making unrealistic assump-
tions that later prevent the code from running
on a real system. The move to reality is not
always completely transparent, however. One
group using EmStar recently developed a float-
ing-point signal correlator which worked fine on
the x86-based simulator. When run on a Strong-
ARM-based embedded node, it ran very slowly:

the StrongARM has no hardware floating-point
support.

The main advantage of the simulator is that it
offers complete visibility into the system being
tested. Nodes running in simulation can easily
log “distributed” events in their global temporal
order. Practically infinite space is available for
saving sensor “inputs,” debugging messages, the
intermediate results of computations, or any
other information useful for understanding the
system’s behavior. As described in more detail in
[5], EmStar’s programming model also allows
interactive inspection of much of the system’s
internal state while the simulation is running.
Since the simulator is a full-fledged desktop
workstation, it is easy to use complex debuggers,
visualization tools, memory checkers, and so
forth.

In addition to visibility, simulators offer
exceptional control. Unlike code running on dis-
tributed nodes, centrally simulated nodes can be
instantly “placed” in any topology, or a random
topology, via a configuration file. Systematic
testing of a range of scenarios is easy, including
configurations that might not be feasible to actu-
ally deploy due to cost or other constraints. Fur-
thermore, while the real environment is
constantly in flux, a simulation can be made
completely deterministic; this is useful because
many problems are easy to fix once they are con-
sistently reproducible.

Simulations are also attractive because of
their accessibility. It is still prohibitively expen-
sive to give each developer enough real nodes to
perform experiments on a significant scale. In
contrast, a simulation machine is (currently)

n Figure 2. A block diagram of a simple EmStar software stack. Each block rep-
resents a Linux process. Arrows indicate flows of packets, state, or other infor-
mation. Details of the interprocess communication are described in [5].

Sensor network application

Time
synchronization

Berkeley mote sensor/radio platform

Compaq iPAQ or PC104 hardware

Radio driver Sensor driver

Radio Sensors

IEEE Wireless Communications • December 200474

much more accessible than actual sensor net-
work hardware; it is cheap, ubiquitous, and easy
to use. This allows many developers to work in
parallel rather than contending for limited real
hardware. It also opens sensor network develop-
ment to a much wider audience — enabling, for
example, remote development, undergraduate
and high school class projects, and tinkering by
hobbyists. emsim is also useful because it can
simulate larger numbers of nodes (hundreds)
than may be available in reality — allowing
developers to see the effects of scale long before
it is possible to do so in the real world.

Of course, the disadvantage of simulation is
that it does not capture every aspect of the real
world that can affect the outcome. This is an
important problem in sensor networks; their
function is often intimately tied to the world in
which they are physically situated. However,
early in the development of a new algorithm,
subtle effects of the radio or sensor channels are
often invisible compared to the basic problems
encountered when writing any new software.
When code is first written, even a trivial channel
model will reveal fundamental design flaws and
protocol bugs, sanity-check the offered load
against the channel capacity, and let developers
find common software problems such as memory
overruns, broken interfaces, and plain coding
errors. Inexperienced developers tend to spend
particularly long times dealing with these sorts of
issues. In our experience, using the simulator
makes the process much faster.

Because of the simplicity of our channel mod-
els (Fig. 4), algorithms that are sensitive to the
subtleties of the channel are not as well served
by emsim. For example, our simulator would be
a poor tool for testing a module that tries to

deduce the range between two nodes based on
radio signal strength. However, much of the sup-
porting code surrounding channel-dependent
algorithms can be effectively developed and test-
ed in simulation, such as the network protocols
and statistical algorithms required for a group of
nodes to automatically schedule ranging experi-
ments, share their deduced ranges, discard out-
liers, and synthesize what remains into a
consistent shared coordinate system.

Once EmStar code works in emsim, develop-
ment can continue by using the modes that incor-
porate real channels, as described in the coming
sections. Debugging code while dealing with the
vagaries of real RF propagation is slower and
more difficult. However, since the code has
already been vetted in the simulator, far less
total time is required.

THE CEILING ARRAY
Roboticist Rodney Brooks has famously
observed, “The world is its own best model.”
This guidance is also apt for sensor networks
that, like robots, are physically situated. The
research community’s past efforts have shown
it is very difficult to model RF propagation
for short-range low-power radios in complex
environments [4]. Indoor models are notori-
ous because reflection, diffraction, and scat-
tering are caused by both the structure itself
and the objects inside it . Yet our channel
models are simplistic; instead of trying to pre-
dict these effects with great fidelity, the goal
of our simulations is only to be good enough
to support basic software development. In
EmStar, realistic channels come from the ceil-
ing array, a platform that uses the world as its
channel model.

nnnn Figure 3. The structure of emsim in pure simulation mode. For each node, an instance of emrun is
launched, creating a stack such as the one in Fig. 2. However, instead of physical devices, simple radio
channel and sensor input models moderate each node's interactions with the physical world. The channel
simulator provides interfaces that emulate the behavior of the real device drivers. This allows the same ser-
vices and applications to run on top of the simulated device drivers without modification.

Simulated
sensor driver

Simple environmental and sensor model

Simulated
sensor driver

Workstaion-class simulator hardware

Simulated
radio driver

Simulated node l

Simple channel and radio model

Simulated
radio driver

Simulated node n

Debugging code
while dealing with
the vagaries of real
RF propagation is
slower and more
difficult. However,
since the code has
already been vetted
in the simulator, far
less total time is
required.

IEEE Wireless Communications • December 2004 75

We permanently mounted a uniform array
of 55 motes to the ceiling of the CENS systems
laboratory, pictured in Fig. 5. The motes are
all wired for power and have a serial port con-
nection back to a central simulation machine.
As in a real deployment, each mote is pro-
grammed to be a wireless transceiver and sen-
sor interface board. emcee, the ceiling array
control program, is similar in most ways to
emsim — all the instances of the node stack
are run centrally. However, the channel simu-
lator module is not used; instead, each simulat-
ed node is mapped to one of the motes on the
ceiling. When a node sends a packet, it is trans-
mitted and received by real motes through the
real channel (Fig. 6).

The usefulness of the ceiling array relative
to the simulator stems from the complexity of
the real channel. The environment causes dis-
tortion and multipath fading; the effects
include spatially correlated packet loss, asym-
metric links, and non-monotonically degrading
connectivity as range increases. Changes in the
environment (e.g. , motion of people and
objects, electrical devices turning on and off,
cell phone calls) also cause a variety of time-
varying effects.

Figure 7 shows two of the experiments we
performed on the ceiling array channel. For con-
nectivity between a pair of nodes at fixed loca-
tions, the channel exhibits both short- and
long-term time dependencies (left). Independent
of the other effects, there are also spatial depen-
dencies (right) with adjacent nodes demonstrat-
ing correlated losses, and different spatial
regions showing significantly different behavior.
While any one of these metrics may be easily
simulated, it is difficult to capture all the various
dimensions of RF propagation dynamics working
together — especially when many of the dimen-
sions are unknown, and many are uncharacter-
ized.

The ease of use of the ceiling array has been

a crucial feature. Applications that work in
emsim can be tested on the ceiling array just by
typing emcee instead. Because the motes are per-
manently programmed, powered, wired, and
mounted, the ceiling array shields developers
from most of the difficulty in dealing with large
numbers of small devices, while still bringing
important aspects of reality to bear. The hybrid
simulations have many of the same advantages
of emsim: simulated nodes run centrally, so
debugging is facilitated by complete visibility
into the system and a rich set of debugging and
visualization tools. When the overhead of testing
code on a real channel is so low relative to simu-

n Figure 4. Two of the emsim channel models. Not shown is the deterministic circle model, in which nodes less than 8 m apart can
exchange packets with 100 percent reliability, while nodes separated by longer ranges can never exchange packets. While unrealistic, the
determinism is helpful for debugging fledgling applications. a) The normal noise model is somewhat more realistic: as nodes are sepa-
rated by greater distances, the loss rate gradually increases. It also has a basic model of the mote’s potentiometer (POT) on transmit
range. b) Empirical average is a statistical model based on experiments with real motes. We used connectivity data that were collected at
various ranges and potentiometer settings as part of the ASCENT project [6].

Distance (m)

Probability of successful delivery using norm_noise model vs. distance

15 200
0.0

0.2

Pr
ob

ab
ili

ty
 o

f
su

cc
es

s

0.4

0.6

0.8

1.0

105

Distance (m)

Probability of succesful delivery using emp_avg model vs. distance

15 200
0.0

0.2

Pr
ob

ab
ili

ty
 o

f
su

cc
es

s

0.4

0.6

0.8

1.0

105

POT= 40
POT = 60
POT = 80

POT = 40
POT = 60
POT = 80

n Figure 5. Fifty-five wireless network interfaces, mounted on the ceiling of our
laboratory and wired back to a simulation server, help to bridge the gap
between simulation and reality. Developers can learn about the effects of real
wireless channels in an environment as convenient as simulation.

IEEE Wireless Communications • December 200476

lation, developers tend to test their code against
the real channel early and often.

Developers can control the mapping of simu-
lated nodes to physical motes, so varying topolo-
gies can be achieved by using different subsets of
the ceiling motes. Of course, the diversity of
topologies is constrained by the fixed locations
of the motes. This is a limitation relative to the
pure simulator, where arbitrary topologies are
possible. In addition, while many simulator
machines are available, there is only one ceiling
array; contention for its use can be a problem.
These kinds of constraints naturally arise when
moving from a purely virtual to a partially physi-
cal system.

Another important limitation of the ceiling
array is that it represents one particular channel
and is not representative of all channels. RF
propagation in our laboratory has interesting
and important dynamics not seen in the simula-

tor, but not all offices are the same, and none of
them are likely to reflect the behavior of nodes
in a forest or desert. This limitation is the moti-
vation for our portable array.

THE PORTABLE ARRAY
Software-wise, the portable array is identical to
the ceiling array: it uses emcee to run simulated
instances of the stack centrally, and connects
each instance to a mote that is wired to the sim-
ulator. However, instead of using a server
attached to motes permanently mounted on the
ceiling, the portable array uses a laptop and
“loose” battery-powered motes that can be
placed anywhere.

The portable array is useful for exposing
applications to the characteristics of the intend-
ed deployment environment, while using a plat-
form that still has most of the conveniences of
pure simulation. Such experience can be invalu-
able; the communication channel and sensor
responses can differ significantly in an area of
sparse trees vs. an area with dense low brush.
The portable array allows developers to confront
these issues before the system is deployed in an
inaccessible area with limited diagnostic output.

The disadvantages of the portable array are
mostly practical. Unlike the ceiling array, which
is always ready at the touch of a button, use of
the portable array involves a trek to a foreign
environment with a box full of motes and hun-
dreds of feet of cable.

These logistical concerns are not trivial:
research in wireless sensor networks exists
because of the desire to observe environments
where a large-scale deployment of wired sensors
is infeasible.

The inconvenience of deploying the portable
array is the price paid for an almost completely
realistic in situ deployment that still has the
complete visibility of a simulation. It also pre-
vents the portable array from growing to a large
number of radio and sensor interfaces. For this
reason, the portable array differs from true
deployment in one key area, as seen in Fig. 1:
scale.

n Figure 6. The structure of emcee, a hybrid mode that combines simulation with
real channels. As with emsim, multiple instances of emrun are run, including
real device drivers. The drivers are attached to 54 Berkeley motes permanently
mounted on the laboratory ceiling.

Radio and sensor array mounted on ceiling

Workstation-class simulator hardware

Simulated node l Simulated node n

Radio driver

Radio Sensor Radio Sensor

Sensor driver Radio driver Sensor driver

n Figure 7. a) A pronounced change in the probability of reception between a fixed pair of nodes within the duration of a single experiment;
b) the effects of spatially correlated noise. The lower three curves represent three nodes in a particular region of the network that has
lower than average probability of reception. In contrast, the top curve shows a curve from a region that displays exceptional short-range
propagation characteristics, then quickly falls to below the average at longer distances.

Time (s)

Link connectivity vs. time

8000 10,0000
10

20

C
on

ne
ct

iv
it

y

30

40

50

60

70

80

90

100

600040002000

Distance from transmitter (ft)

Probability of reception vs. node separation

0
0

20

Pr
ob

ab
ili

ty
 o

f
su

cc
es

sf
ul

 r
ec

ep
ti

on
 (

%
)

40

60

80

100

5 10 15 20 25 30

Long-term average

System average
Different region

IEEE Wireless Communications • December 2004 77

DATA REPLAY

In the previously described platforms, nodes run
with either a channel that is completely simulat-
ed (as with emsim), or a real channel (as with
emcee or a real deployment using only emrun).
Data replay mode adds a new dimension: sensor
inputs can be recorded or taken from other
sources such as existing seismic arrays or vehicle
transportation data. Later, these stored sensor
time-series can be played back in real time to an
otherwise simulated set of nodes. Data replay
mode is essentially a trace-driven simulation,
where the trace is a time-series of sensor values.

Data replay mode is valuable to help develop
algorithms that have dependencies on the behav-
ior of sensors, in cases where the sensors have
already been well characterized. For example,
the seismology community keeps databases of
time-series data from seismometers, annotated
with global timestamps and positions. This kind
of data will be used to feed a simulated seis-
mometer as part of an EmStar simulation, facili-
tating development of algorithms for automatic
event detection and localized collaboration.

CONCLUSIONS AND FUTURE WORK

Robust software is needed to make the sensor
network vision a reality. To make software
robust, designers must experience the failure
modes of sensors in the real world — early and
often. EmStar helps to ease the transition from
prototype to working system by increasing sys-
tem visibility and thereby shedding light on fail-
ure modes. Developers get the basics of an
algorithm working in a controlled environment
(simulation); then understand the effects of both
scale (via a large simulation) and the real envi-
ronment (via the ceiling and portable arrays).
Code that has been debugged using all the
modes has a good chance of working in a real-
world deployment, where it must both be scal-
able and deal with the effects of the real
environment. While deployed code may not
work immediately, an immense amount of real
progress can be made in a much more friendly
environment.

While EmStar has proved useful, there is still
much work to be done. For example, our work
with emcee so far has focused on communica-
tions research. By adding sensors to the array,
we can gain experience with real sensor inputs
earlier than in a fielded deployment. In addition,
we plan to create a public testbed based on
EmStar, allowing researchers without access to
large-scale hardware resources to test their algo-
rithms in the real world, rather than remaining
limited to simulation-based research.

We anticipate that these and other improve-
ments will be useful, but ultimately the test will
be the success of fully fielded systems that have
grown up in the EmStar development environ-
ment. Two such systems are in development: a
100-node tiered architecture microclimate array,
and a 50-node collaborative multihop seismic
array. We are working with our partners in the

natural sciences to create a system that is both
scientifically useful and advances the state of the
art in sensor system design.

ACKNOWLEDGMENTS
EmStar was made possible through the support
of National Science Foundation Cooperative
Agreement #CCR-0120778, and matching grants
from Intel Corporation and Sun Microsystems.
Additional support was provided by the DARPA
NEST program (the “GALORE” project, grant
F33615-01-C-1906) and the University of Cali-
fornia MICRO program (grant number 01-031).
Sensoria Corporation provided valuable feed-
back and support.

EmStar is a group effort; contributors include
Naim Busek, Vlad Bychkovskiy, Alberto Cerpa,
Deepak Ganesan, Ben Greenstein, Eric Oster-
weil, Nithya Ramanathan, Roy Shea, Fabio
Silva, Tom Schoellhammer, Thanos Stathopou-
los, Hanbiao Wang, and Yan Yu. More informa-
tion can be found on our project Web page,
http://cvs.cens.ucla.edu/emstar.

REFERENCES
[1] A. Cerpa et al., “Habitat Monitoring: Application Driver

for Wireless Communications Technology,” Proc. SIG-
COMM Wksp. Commun. Latin America and the Car-
ribean, Costa Rica, Apr. 2001.

[2] A. Mainwaring et al., “Wireless Sensor Networks for Habitat
Monitoring,” Proc. 1st ACM Wksp. Wireless Sensor Net-
works and Apps., Atlanta, GA, Sept. 28, 2002.

[3] G. Pottie and W. Kaiser, “Wireless Sensor Networks,”
Commun. ACM, vol. 43, no. 5, May 2000, pp. 51–58.

[4] H. Hashemi, “The Indoor Radio Propagation Channel,”
Proc. IEEE, vol. 81, no. 7, July 1993, pp. 943–68.

[5] L. Girod et al., “Emstar: A Software Environment for Devel-
oping and Deploying Wireless Sensor Networks,” Proc.
2004 USENIX Tech. Conf., Boston, MA, June 2004.

[6] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Config-
uring Sensor Networks Topologies,” Proc. INFOCOM
2002, New York, NY, June 23–27, 2002.

BIOGRAPHIES
JEREMY ELSON (jelson@microsoft.com) is a researcher in the
Networked Embedded Computing laboratory of Microsoft
Research. He earned his Ph.D. in computer science in 2003
at the University of California at Los Angeles’ (UCLA's) Cen-
ter for Embedded Networked Sensing. His dissertation
work on time synchronization in low-power wireless sensor
networks, advised by Prof. Deborah Estrin, earned the
Edward K. Rice Outstanding Graduate Student award. His
other research interests include operating system issues
and programming models in distributed self-organizing
networks.

LEWIS GIROD is a Ph.D. candidate in computer science at
UCLA. He received his B.S. and M.E. in computer science
from Massachusetts Institute of Technology in 1995. After
working at LCS for three years in the area of Internet nam-
ing infrastructure, he joined Deborah Estrin's group in
1998. His research focus is the development of robust net-
worked sensor systems, specifically physical localization
systems that use multiple sensor modalities to operate
independent of environment and deployment.

DEBORAH ESTRIN (Ph.D., MIT 1985) is a professor of comput-
er science at UCLA and director of the NSF Science and
Technology Center for Embedded Networked Sensing
(CENS) http://cens.ucla.edu. She helped to define the
research agenda for wireless sensor networks, chairing a
1998 DARPA study and a 2001 National Research Council
study. Her research addresses protocols for autonomous,
distributed, and physically coupled wireless systems, with
a particular focus on environmental monitoring applica-
tions. Her earlier research focused on Internet scaling and
routing.

We plan to create a
public testbed based
on EmStar, allowing
researchers without

access to large-scale
hardware resources

to test their
algorithms in the
real world, rather

than remaining
limited to

simulation-based
research.

	footer1:

