Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Vascular Supply of the Cerebral Cortex is Specialized for Cell Layers but Not Columns

Published Web Location

http://cercor.oxfordjournals.org/content/25/10/3673
No data is associated with this publication.
Creative Commons 'BY-NC' version 4.0 license
Abstract

The vascular supply to layers and columns was compared in macaque primary visual cortex (V1) by labeling red blood cells via their endogenous peroxidase activity. Alternate sections were processed for cytochrome oxidase to reveal "patches" or "blobs," which anchor the interdigitated column systems of striate cortex. More densely populated cell layers received the most profuse blood supply. In the superficial layers the blood supply was organized into microvascular lobules, consisting of a central venule surrounded by arterioles. Each vessel was identified as an arteriole or venule by matching it with the penetration site where it entered the cortex from a parent arteriole or venule in the pial circulation. Although microvascular lobules and cytochrome oxidase patches had a similar periodicity, they bore no mutual relationship. The size and density of penetrating arterioles and venules did not differ between patches and interpatches. The red blood cell labeling in patches and interpatches was equal. Moreover, patches and interpatches were supplied by an anastomotic pial arteriole system, with no segregation of blood supply to the two compartments. Often a focal constriction was present at the origin of pial arterial branches, indicating that local control of cortical perfusion may be accomplished by vascular sphincters.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item