Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1

Abstract

DNA damage response mediator protein 53BP1 is a key regulator of non-homologous end-joining (NHEJ) repair. 53BP1 protects DNA broken ends from resection by recruiting two downstream factors, RIF1 (RAP1-interacting factor 1) and PTIP (Pax transactivation domain-interacting protein), to double-stranded breaks (DSBs) via ATM (ataxia telangiectasia mutated)-mediated 53BP1 phosphorylation, and competes with BRCA1-mediated homologous recombination (HR) repair in G1 phase. In contrast, BRCA1 antagonizes 53BP1-direct NHEJ repair in S/G2 phases. We and others have found that BRCA1 prevents the translocation of RIF1 to DSBs in S/G2 phases; however, the underlying mechanism remains unclear. Here we show that efficient ATM-dependent 53BP1 phosphorylation is restricted to the G1 phase of the cell cycle, as a consequence RIF1 and PTIP accumulation at DSB sites only occur in G1 phase. Mechanistically, both BRCT and RING domains of BRCA1 are required for the inhibition of 53BP1 phosphorylation in S and G2 phases. Thus, our findings reveal how BRCA1 antagonizes 53BP1 signaling to ensure that HR repair is the dominant repair pathway in S/G2 phases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View