Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: Results and comparative studies from California's Central Valley agricultural regions

Abstract

The agricultural sector is the largest consumer of water in California. The impacts of irrigation on local and/or regional weather and climate have been studied and reported in recent literature. However, because of the lack of observations and realistic irrigation schemes employed in the numerical models, most previous studies fall in the category of sensitivity tests, focusing on temperature variations. The results being reported in this paper are obtained by incorporating into the MM5/Noah land surface model an irrigation method practiced in California's farming sector. The proposed irrigation scheme is based on the principle that irrigation occurs when available soil-water content is less than the maximum allowable water depletion (SWm), which depends on both soil type and crop type. The study's focus was to evaluate the impact of a more realistic irrigation scheme on surface fluxes, especially evapotranspiration (ET). It is demonstrated that more accurate amounts and patterns of ET in the Central Valley are realized, as compared to ET estimates (in terms of amounts and spatial distribution) obtained from remotely sensed observation as well as in situ ground data. It is demonstrated that significant discrepancies of ET estimates between different irrigation schemes used in regional hydroclimate modeling exist, which may result in erroneous conclusions about the impact of irrigation on regional water balance, especially over and near agricultural areas. © 2012 by the American Geophysical Union.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
of 0
Current View