Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Identifying Important Microphysical Properties and Processes for Marine Fog Forecasts

Abstract

In this study, a marine fog event that occurred from 0000 to 1800 UTC 7 September 2018 near Canada’s Grand Banks is used to investigate the sensitivity of simulated fog properties to six model parameters found primarily in the microphysics scheme. To do so, we ran a large suite of regional simulations that spanned the life cycle of the fog event using the Regional Atmospheric Modeling System (RAMS). We randomly selected parameter combinations for the simulation suite and used Gaussian process regression to emulate the response of a variety of simulated fog properties to the parameters. We find that the microphysics shape parameter, which controls the relative width of the droplet size distribution, and the aerosol number concentration have the greatest impact on fog in terms of spatial extent, duration, and surface visibility. In general, parameters that reduce mean fall speed of droplets and/or suppress drizzle formation lead to reduced visibility in fog but also delayed onset, shorter lifetimes, and reduced spatial extent. The importance of the distribution width suggests a need for better characterization of this property for fog droplet distributions and better treatment of this property in microphysics schemes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View