Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Diagnostic Performance of a Deep Learning-Powered Application for Aortic Dissection Triage Prioritization and Classification.

Abstract

This multicenter retrospective study evaluated the diagnostic performance of a deep learning (DL)-based application for detecting, classifying, and highlighting suspected aortic dissections (ADs) on chest and thoraco-abdominal CT angiography (CTA) scans. CTA scans from over 200 U.S. and European cities acquired on 52 scanner models from six manufacturers were retrospectively collected and processed by CINA-CHEST (AD) (Avicenna.AI, La Ciotat, France) device. The diagnostic performance of the device was compared with the ground truth established by the majority agreement of three U.S. board-certified radiologists. Furthermore, the DL algorithms time to notification was evaluated to demonstrate clinical effectiveness. The study included 1303 CTAs (mean age 58.8 ± 16.4 years old, 46.7% male, 10.5% positive). The device demonstrated a sensitivity of 94.2% [95% CI: 88.8-97.5%] and a specificity of 97.3% [95% CI: 96.2-98.1%]. The application classified positive cases by the AD type with an accuracy of 99.5% [95% CI: 98.9-99.8%] for type A and 97.5 [95% CI: 96.4-98.3%] for type B. The application did not miss any type A cases. The device flagged 32 cases incorrectly, primarily due to acquisition artefacts and aortic pathologies mimicking AD. The mean time to process and notify of potential AD cases was 27.9 ± 8.7 s. This deep learning-based application demonstrated a strong performance in detecting and classifying aortic dissection cases, potentially enabling faster triage of these urgent cases in clinical settings.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View