Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Layer-dependence study of two-dimensional ferromagnets: Fe3GeTe2 and Fe5Ge2Te2

Published Web Location

https://doi.org/10.1063/5.0207209
Abstract

We have investigated the electrical transport properties of nanodevices fabricated from exfoliated flakes of two-dimensional metallic ferromagnets Fe3GeTe2 (FGT) and Fe5Ge2Te2 (FG2T) down to below three layers in thickness. The per-layer anomalous Hall conductivity even in thick FGT and FG2T devices is found to be much smaller than ∼e2h, the approximate value calculated for thick undoped crystals. Moreover, we obtain a power-law scaling relation between the per-layer anomalous Hall and per-layer longitudinal conductivities with an exponent close to 1.6, which agrees with the universal value for poor ferromagnetic conductors. Both FGT and FG2T devices show clear layer-dependent Curie temperatures and layer-dependent perpendicular magnetic anisotropy, with FG2T dominating the former and FGT dominating the latter for all thicknesses. Despite their declining trend as the device thickness decreases, both Curie temperature and magnetic anisotropy retain a significant fraction of their bulk values (>60% and >80% of the bulk values, respectively, even in the thinnest FG2T device), indicating attractive potential for practical applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View