Skip to main content
eScholarship
Open Access Publications from the University of California

Coupled forward-adjoint monte carlo simulations of radiative transport for the study of optical probe design in heterogeneous tissues

  • Author(s): Hayakawa, Carole K.
  • Spanier, Jerome
  • Venugopalan, Vasan
  • et al.
Abstract

We introduce a novel Monte Carlo method for the analysis of optical probe design that couples a forward and an adjoint simulation to produce spatial-angular maps of the detected light field within the tissue under investigation. Our technique utilizes a generalized reciprocity theory for radiative transport and is often more efficient than using either forward or adjoint simulations alone. For a given probe con. guration, the technique produces rigorous, transport-based estimates of the joint probability that photons will both visit any specified target susubvolume and be detected. This approach enables the entire tissue region to be subdivided into a collection of target subvolumes to provide a phase-space map of joint probabilities. Such maps are generated efficiently using only one forward and one adjoint simulation for a given probe configuration. These maps are used to identify those probe configurations that best interrogate targeted subvolumes. Inverse solutions in a layered tissue model serve to illustrate and reinforce our analysis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View