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Abstract of the Dissertation

Investigation of the interior of Mercury through
the study of its gravity, topography, and tidal

response

by

Sebastiano Padovan
Doctor of Philosophy in Geophysics and Space Physics

University of California, Los Angeles, 2015

Professor Jean-Luc Margot, Chair

With the goal of furthering our understanding of the interior structure of Mercury,

this work tries to answer the following two questions. What can the response of

the planet to solar tides reveal about the interior structure? What is the thickness

of the crust and what are the implications for the interior? By comparing the

models developed here for the tidal response of Mercury with the response mea-

sured by the MErcury Surface Space ENvironment GEochemistry and Ranging

spacecraft (MESSENGER), the rheology of the mantle of the innermost planet is

investigated. The measured tidal deformation indicates that, unless the rigidity

of mantle materials is unexpectedly high, the mantle is relatively cold. Geochem-

ical arguments based on the composition of the surface of Mercury as measured

by MESSENGER have been used to put forward the hypothesis of the existence

of a solid FeS layer at the bottom of the mantle. The tidal modeling indicates

that the presence of the FeS layer is unlikely. To further constrain the inte-

rior structure of Mercury the thickness of the crust is calculated by computing

geoid-to-topography ratios over the surface of the planet. The inferred crustal
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thickness, 35 ± 18 km, has three interesting implications. First, this relatively

thin crust allows for the possibility that basin-forming events excavated mantle

material from Mercury’s mantle. If this material is still exposed on the surface

it can potentially be observed by instruments onboard MESSENGER and future

missions at Mercury. Second, the volume of silicate materials present in the crust

of Mercury represents about 10% of the total silicate materials in the planet, the

largest value among the terrestrial planets. This implies that Mercury had the

highest efficiency of crustal production. Finally, by combining the estimate of

the crustal thickness with the measured abundances of heat-producing elements

on the surface of Mercury a lower bound can be placed on the amount of heat

production in the mantle at a time following the accretion and differentiation

of the planet, approximately 4.45 Ga ago. This information is useful for future

models of the thermochemical evolution of the innermost planet.
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Introduction

The work presented in this dissertation is concerned with the some of the actual

constraints that we can place on the interior structure of Mercury. By actual

constraint it is intended a datum that requires as little extra information or

assumptions as possible to be interpreted in terms of interior properties. However,

even the most basic piece of information, the mean density of a body, provides

very little insight on its interior structure unless it is combined with information

about the synthesis of elements in stars and the composition of Earth’s rocks and

of meteorites.

All the theories and applications described in this dissertation are in principle

applicable to all the terrestrial bodies. The category of terrestrial bodies here

includes all the bodies with a solid surface whose composition is dominated by

silicate rocks and metals and that are massive enough for the gravitational forces

to dominate over rigid body forces. The planets of the inner solar system and

large natural satellites, such as the Moon and the Galilean satellites, are thus

included in this category.

Earth is the best characterized terrestrial body, mostly thanks to data col-

lected through seismometers, which are arguably the most informative instru-

ments for the determination of the interior properties of terrestrial bodies. There

are only two examples of non-terrestrial seismological experiments. One is the

Apollo Lunar Surface Experiment Package (ALSEP), which operated on the sur-

face of the Moon until 1977 and whose data have been reanalyzed and used to

infer a rather accurate description of the lunar interior (Weber et al., 2011). The

second seismometer is part of an instrument package which will fly onboard the

mission InSight to Mars (Banerdt et al., 2013). Because there are no immedi-
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The surface and interior of Mercury. Credit: NASA and Space.com.

ate plans for a geophysical network on Mercury, however, the investigation of

its interior structure is currently based on dynamical measurements and on the

determination of its gravity field and topography. The figure on top illustrates

the current understanding of the interior of Mercury. A large liquid core whose

radius is about 80% of the radius of the planet (in yellow) is surrounded by a

mantle (orange) and a crust (brown) (Smith et al., 2012; Margot et al., 2012;

Hauck et al., 2013; Rivoldini and Van Hoolst , 2013).

Organization of the dissertation

The dissertation is organized as follow:

• Chapter 1 describes some basic constraints available for the characterization

of terrestrial bodies and the methods used to measure them. Some examples

of interior models of Mercury based on these constraints are then illustrated;
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• In Chapter 2 we model the response of Mercury to the solar tide and we

interpret the measurement of the tidal response in terms of the interior prop-

erties of the planet. This chapter represents a verbatim copy of Padovan

et al. (2014a). The theoretical material behind the models presented in this

chapter is found in Appendix A;

• The paper Padovan et al. (2014a) was published before an official estimate

for the tidal deformation of Mercury was published by the MESSENGER

team. Chapter 3 is an update to the conclusions of Padovan et al. (2014a),

where we reconsider our results in the light of the measurement of the tidal

response published in Mazarico et al. (2014a);

• Chapter 4 describes our attempt at constraining the thickness of the crust

of Mercury from the measurement of the gravitational field and topography

of the planet. The work presented in this chapter is currently under revision

(Padovan et al., 2014b). A little theoretical background for the material

presented in this chapter is found in Appendix D;

• The conclusions and the prospects for future work are presented in Chapter

5.
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CHAPTER 1

The interior of terrestrial bodies

1.1 Constraints

1.1.1 Mean density

The mass M and the radius R of a body are directly related to the mean density

ρ ∝ M/R3. The case of Enceladus provides an instructive example on how this

single quantity can provide a large amount of information. Before the Cassini

spacecraft reached Saturn and measured the mass of this small natural satellite

(whose radius is about 251 km), the mean density was estimated to be about 1100

kg/m3, indicative of an icy body. The more precise determination made by the

Cassini spacecraft, ρ = 1608 kg/m3 (Porco et al., 2006), indicated that silicate

rocks and perhaps metals were present in the interior of the body. This opened

up the possibility that radiogenic heating, present in the rock component, could

sustain the presence of a liquid ocean beneath the icy surface (Schubert et al.,

2007). This has been later confirmed by analysis of additional Cassini data (Iess

et al., 2014).

The mean densities of Earth and Mercury are equal to 5515 kg/m3 and 5427

kg/m3, respectively. These values correspond to the uncompressed densities ρ ∼

4000 kg/m3 for the Earth and ρ ∼ 5300 kg/m3 for Mercury. If we assume that

both bodies are made of silicate rocks, with a density of∼ 3000 kg/m3 and metals,

4



with a density of ∼ 7500 kg/m3, this implies that Mercury has more metals than

the Earth.

1.1.2 Moments of inertia

For a spherically symmetric object of radius R the moment of inertia I is defined

as the volume integral

I =

∫
V
ρ(r)r2

⊥dV =
8π

3

∫ R

0

ρ(r)r4dr, (1.1)

where r2
⊥ is the distance with respect to an axis through the center of the body, V

is the volume of the body whose radius is R, and the radial coordinate is r. The

moment of inertia is sensitive to the radial distribution of matter and therefore

gives additional information with respect to the mean density alone. I can be

written as I = αMR2, where α is a dimensionless parameter related to the radial

distribution of matter. A homogenous sphere corresponds to α = 0.4. For the

Earth α = 0.33, indicating that the mass is concentrated toward the center. For

the Moon α = 0.39, indicative of a close-to-homogeneous body. No moment of

inertia information is available for Venus, and models for its interior structure

are usually based on inferences drawn from its similarity with Earth (e.g., Aitta,

2012).

Terrestrial bodies are not perfectly spherical, and the value of the moment

of inertia will in general depend on the chosen axis. Nevertheless there are only

three independent moments, indicated with A, B, and C. A (B, C) is the moment

of inertia with respect to the x (y, z) axis. The moment of inertia I of equation

(1.1) is here taken as representing the mean moment of inertia,

I =
A+B + C

3
. (1.2)
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1.1.3 Tidal deformation

The phenomenon of the tides enriches the number of possibilities that can be used

in the determination of the internal structure of a planet, since the tidal response

is a function of the density, rigidity, and viscosity of the subsurface materials.

The theory behind the modeling of the tidal response of a terrestrial body can

be found in many sources (e.g., Alterman et al., 1959; Kaula, 1968), whose origin

are the two works of A. E. H. Love (Love, 1911; Love, 1927). The problem

reduces to the solution of the equations of motion inside the body. The motion

includes both material stresses and gravitational forces, the latter originating

from a gravitational potential that is the sum of the auto-gravitation and the

external tidal potential. The three second-order differential equations of motion

are transformed into a system of six first-order linear differential equations in

radius (Alterman et al., 1959). A detailed account of the method is given in

Appendix A. We report here the key equations. The system of equations to be

solved is:
dy

dr
= Ay, (1.3)

where y has six components related to the radial and tangential displacement,

radial and tangential stress, incremental gravitational potential (i.e., potential

due to the deformation plus external potential), and gravitational potential gra-

dient. Material properties, i.e., density, rigidity, and viscosity, enter both y and

the 6× 6 matrix A. The solution can be written as

y = QC. (1.4)

Given an interior model for the body, i.e., thickness and material properties for

each of its layers, the form of the 6 × 6 matrix Q is known (see section A.1.8).

The 6 × 1 vector of constants of integration C is constrained by the boundary

6



conditions of the problem. At the center of the planet the radial and tangential

displacement and the incremental gravitational potential are zero. At the free

surface the radial and tangential stresses are zero and the jump discontinuity in

the gravitational potential gradient is known.

We are interested in the gravitational perturbation of the planet induced by

the tides, since this has been measured for Mercury (Mazarico et al., 2014a). This

is modeled with the Love number k (section 1.2.3 below). From the solution for

the incremental gravitational potential (Appendix A) it is possible to calculate

the Love number k as1

k = Ry5 − 1. (1.5)

The modeling of the response to the solar tide has been applied in the past

to support the hypothesis of a liquid core in Venus (Konopliv and Yoder , 1996)

and a global liquid ocean in Titan (Iess et al., 2012). Yoder et al. (2003) used the

measurement of the tides of Mars to reveal the liquid state of the Martian core

and to estimate its radius. We will use the measurement of the response to the

solar tide of Mercury to investigate the rheological properties of its outer solid

shell.

1.2 Measurable quantities

1.2.1 Gravitational fields

During orbit phase, the main factor affecting the dynamics of an orbiter is the

gravitational field of the central body2. The analysis of the radio-science segment
1Equation (1.5) is consistent with the definition of y5 given in Appendix A. Different authors

define y5 differently, and the expression for k is accordingly different (e.g., in Tobie et al. (2005)
k = y5 − 1).

2This situation can be different from case to case, but this is in general true for orbiters
around planets.
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of an orbiter allows one to derive the parameters used in the description of the

gravitational field of the body and then to make inferences about its interior

structure. The standard way of representing the gravitational field is by spherical

harmonics. The gravitational field U outside a body is (Kaula, 1966):

U(P ) =
GM

r

[
1 +

∞∑
n=2

n∑
m=0

(
R

r

)n

(Cnm cosmλ+ Snm sinmλ)Pnm (cos θ)

]
.

(1.6)

In the previous expression U is evaluated at the position P with coordinates

(r, θ, λ) in a body-fixed reference frame. The radial coordinate is r and the pair

(θ, λ) represents colatitude and longitude, respectively. G is the gravitational

constant, R is the equatorial radius of the body and Pnm are the Legendre poly-

nomials. The lack of the n = 1 term in the summation implies that the reference

frame is centered in the center of mass of the body, whose mass is M . Gravita-

tional fields of Solar System bodies are tabulated in terms of the harmonic (also

known as Stokes’) coefficients Cnm and Snm (available on the NASA planetary

data system http://pds.nasa.gov/). These are the only terms in equation (1.6)

that depend on the interior structure of the body. The formal expression for Cnm

and Snm is:Cnm

Snm

 =
2− δ0m

MRn

(n−m)!

(n+m)!

∫
M

r′
n
Pnm (cosθ′)

cosmλ′

sinmλ′

 dM ′, (1.7)

where δ0m is the Kronecker delta and dM ′ is the infinitesimal element of mass,

dM ′ = ρ′ (r′, θ′, λ′) dV ′. There are simple relations linking the degree 2 coefficients

with the moments of inertia of the body. The expression for the moment of inertia

8
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tensor T is (e.g., Malvern, 1969):

T =


∫
M

(y2 + z2) dM ′ −
∫
M
xy dM ′ −

∫
M
xz dM ′

−
∫
M
xy dM ′ ∫

M
(x2 + z2) dM ′ −

∫
M
yz dM ′

−
∫
M
xz dM ′ −

∫
M
yz dM ′ ∫

M
(x2 + y2) dM ′

 . (1.8)

The three diagonal elements correspond to the three moments introduced in equa-

tion (1.2), and in a principal axis reference frame the off-diagonal elements are

zero. Comparing equation (1.8) with equation (1.7) in a principal axis reference

frame the following relations among Stokes’ coefficients and moments of inertia

are obtained:

J2 = −C20 =
1

MR2

[
C − (A+B)

2

]
, (1.9)

C22 =
B − A
4MR2

. (1.10)

The previous equations link two observable quantities, C20 and C22, with three

quantities that are related to the interior structure of the body: A, B and C.

Therefore the measurement of the gravitational field is not sufficient to infer the

moment of inertia and an additional relation is required3.

1.2.2 Dynamical relations

The moment of inertia of a body is related not only to its gravitational field, as

illustrated by equations (1.9) and (1.10), but also to how the body responds to

an applied external torque. If the torque is known, the modeling of the response

to the torque can be used to formulate a third equation, in addition to equations

(1.9) and (1.10), and to solve for the moment of inertia.
3This holds for a non-principal axis reference frame as well, since to the six independent

elements of the inertia tensor correspond only five Stokes’ coefficients for n = 2.
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For rapidly rotating bodies, the precession of the spin pole can be measured.

Indicating with ŝ the spin pole unit vector, its time evolution (precession) is

governed by the equation (e.g., Bills et al., 2009):

dŝ

dt
= β (n̂ · ŝ) (ŝ× n̂) , (1.11)

where n̂ is the orbit pole unit vector and β is a constant that depends on the

moments of inertia. Indicating with n the orbital mean motion and ω the spin

rate:

β =
3n2

2ω

[
C − (A+B)/2

C

]
. (1.12)

This relation has been used in combination with equations (1.9) and (1.10) to

measure the moment of inertia of Earth and Mars.

In some cases, such as the Galilean satellite Europa, the use of equation (1.11)

is impractical because the precession is too slow to be observed (Bills et al., 2009).

Furthermore the spin precession and the orbit precession are coupled in bodies

that are in Cassini states (as in the case of Europa). However, the theory of

Cassini states (Colombo, 1966a; Peale, 1969) allows one to formulate alternative

expressions that can be used to infer the moment of inertia of a terrestrial body.

In the case of Mercury Peale (1976) showed that by combining the measure-

ments of the spin parameters (obliquity and amplitude of the forced libration

in longitude, which have been inferred for Mercury from radar measurements

(Margot et al., 2007, 2012)) with the second harmonic degree components of the

gravitational field (J2 and C22), it is possible to infer the moment of inertia and,

in presence of a global liquid layer, the moment of inertia of the outer solid shell

with respect to the rotation axis, Cm . If this shell extends between the outer

radius of the core rc and the surface at radius R, the expression for Cm is

Cm =
8π

3

∫ R

rc

ρ(r)r4dr. (1.13)
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Table 1.1 summarizes the constraints that we currently have on the interior

structure of the terrestrial bodies of the inner solar system other than Earth.

1.2.3 Tides

The gravitational field of a body depends on the interior distribution of its mass.

Every solar system object is not perfectly rigid and has a finite extent. The

latter implies that when the body is under the influence of the gravitational field

of another body, gravity force varies inside it. Because of the not perfect rigidity,

this variation modifies the shape and as a consequence the distribution of matter

inside the body. The gravitational field and the shape are then modified and the

extent of these modifications depends on the interior properties.

If an extended body is under the gravitational influence of a tide-raising body

of mass Mp (where p stands for “perturber”), the gravitational potential W at a

point P in the body due to the perturber can be written as:

W =
GMp

l
=
GMp

rp

[
∞∑

n=0

(
r′

rp

)n
Pn (cosψp)

]
, (1.14)

where l is the distance between P and Mp. The angle ψp is the angle between r′

and rp, the distance of P and rp measured from the center of mass of the body,

taken as in Sec. 1.2.1 as the center of the reference frame. The first term of

the summation (n = 0) represents a constant term (GMp/rp) whose gradient is

zero. The second (n = 1) is a term (GMp
r2p
r′ cosψp) whose gradient is constant

throughout the body. The first term in the expression of W that generates the

tide is W2.

The Love number k is a dimensionless parameter that describes the modifica-

tion of the gravitational field of the body due to the effect of an external potential.

When acted upon by the tidal force, the body will deform. This deformation will

11
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be accompanied by a redistribution of matter. The consequent variation of the

gravitational potential of the body, U ′, is modeled through k, which act as a

proportionality constant between U ′ and W :

U ′n = knWn, (1.15)

where the subscript n indicates that each harmonic degree of the tide-raising

potential will modify the corresponding degree in the potential of the body. In

general then the set of parameters kn describes how the gravitational field changes

in response to the tide-raising potential4.

Since in eq. (1.6) the factors that depend on the interior mass distribution of

the body are the Stokes’ coefficients, it is natural to include the tidal modification

by introducing a tidal component in the coefficients. Taking into account the tidal

modification, eq. (1.6) for the gravitational field U becomes:

U(P ) =
GM

r

[
1 +

∞∑
n=2

n∑
m=0

(
R

r

)n

[C ′nm cosmφ+ S ′nm sinmφ]Pnm(cos θ)

]
,

(1.16)

where the tidal modification has been modeled through the introduction of time

varying Stokes’ coefficients,

C ′nm = Cnm + ∆Cnm and S ′nm = Snm + ∆Snm. (1.17)

Cnm and Snm represent the static coefficients, while ∆Cnm and ∆Snm are the

corresponding tidal variations, which are expressed as (Petit, G. and Luzum, B.,

2010):

∆Cnm − i∆Snm = (2− δ0m)
(n−m)!

(n+m)!
knm

(
Mp

M

)(
R

rp

)n+1

Pnm (cos θp) e-imφp,

(1.18)
4The expression for W has to be expressed in the same frame of reference used in eq. (1.6),

in order to apply expression (1.15).
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where the position of the perturber is expressed in the same reference frame used

in eq. (1.6). The measurement of the tidal variation of the Stokes’ coefficients

can be used to infer the magnitude of the Love number k.

1.3 Interior modeling approaches

Modeling the interior structure of a planet with the constraints described in the

previous sections is a non-unique problem. Different approaches can be taken and

some of them are presented in this section. The most accurate models usually

employ the methods of Sohl and Spohn (1997), where the mechanical and thermal

structures are solved simultaneously (section 1.3.1). We compared the initial

results of the MESSENGER mission about the interior structure of Mercury

(Smith et al., 2012) with an isothermal model where only the mechanical structure

is taken into account (section 1.3.2). There is agreement between the results of

this simplified model with those of Smith et al. (2012). We also considered the

simplest possible model for the interior structure of Mercury, a two constant-

density layer model (section 1.3.3). Even in this case there is agreement with

the most up-to-date results (Hauck et al., 2013; Rivoldini and Van Hoolst , 2013).

This represents the motivation to investigate the possible information that would

be obtained from the study of the tidal deformation (Chapter 2).

1.3.1 Theory of terrestrial planetary interior modeling

From the mathematical point of view solving for an interior model means solving

for a set of partial differential equations with appropriate boundary conditions.

The set of equations for a spherically symmetric body in thermal and mechanical

14



equilibrium are (e.g., Sohl and Spohn, 1997):

dm

dr
= 4πρr2, (1.19)

dI

dr
=

8π

3
ρr4, (1.20)

dg

dr
= 4πGρ− 2

g

r
, (1.21)

dP

dr
= −ρg, (1.22)

dq

dr
= ρε− 2

q

r
, (1.23)

dT

dr
= − q

kr
, (1.24)

The equations are:

-(1.19): Continuity equation, where m is the mass, r is the radial coordinate

and ρ is the density;

-(1.20): Moment of inertia (I) equation;

-(1.21): Equation for the acceleration of gravity g;

-(1.22): Hydrostatic equilibrium equation, assuming the balance between pres-

sure P and gravitational forces;

-(1.23): Heat flux equation, with q the heat flow density and ε the specific heat

production rate;

-(1.24): Temperature gradient for boundary layers, with kr the thermal conduc-

tivity.

The temperature profile between boundary layers is assumed to be adiabatic with:

dT

dr
= T

γ

KS

dP

dr
, (1.25)

whereKS is the adiabatic bulk modulus and γ the Grüneisen parameter. The link

between the mechanical properties, Eq. (1.19) to (1.22), and the thermal prop-

erties, Eq. (1.23) to (1.24) is provided by the density, which is linked to pressure
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and temperature through an equation of state (EoS), ρ(r) = ρ [T (r) , P (r)] . The

solution proceeds by applying boundary conditions at the center (where every

variable is zero except for Pc and Tc) and at the surface.

The application of the previous set of equations to the interior structure of

Mercury can be found in Rivoldini et al. (2009), Hauck et al. (2013), and Rivoldini

and Van Hoolst (2013). Given the limited amount of constraints available for

many terrestrial bodies (Table 1.1), it is instructive to approach the interior

modeling using simplified models. Even if they rest on assumptions that are

not valid for real bodies, they can often provide useful insights into the interior

structure.

1.3.2 Compressible isothermal models

In the system of equations presented in Sec. 1.3.1 the mechanical properties can

be separated if an isothermal model is assumed. Radial profiles for mass, density,

gravity and pressure can then be obtained by integrating Eq. (1.19), (1.21) and

(1.22), along with an isothermal equation of state, which is a relation P = P (ρ)

between pressure and density.

This section presents radial profiles obtained for a two-layer body (core plus

mantle) with the mass M and radius R of Mercury. The mantle is assumed to

be homogeneous, while the core is modeled as a homogeneous mixture of Fe and

FeS. Physical parameters used in the models are listed in Table 1.2. Two third-

order isothermal Birch-Murnaghan equations of state relate pressure and density

in the mantle and the core (e.g., Van Hoolst and Jacobs , 2003). Indicating with

ρ0 the reference density and with K and K ′ the isothermal bulk modulus and its
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Figure 1.1: Example of an isothermal model of Mercury obtained with the procedure

described in Section 1.3.2.

pressure derivative, the equation of state reads

P =
3K

2

[(
ρ

ρ0

)7/3

−
(
ρ

ρ0

)5/3
]{

1 +
3

4
(K ′ − 4)

[(
ρ

ρ0

)2/3

− 1

]}
. (1.26)

An example of the density, pressure, and gravity profiles obtained with this pro-

cedure is shown in Fig. 1.1. Black lines represent the profiles for a constant

density planet. Red profiles represent the initial solution for a two-layer planet

obtained by using as initial guess for the radius of the core the value

rc =

[
ρ− ρm

ρc − ρm

]1/3

R, (1.27)

where ρ is the mean density of the planet, and ρm and ρc are the densities for the

mantle and the core, respectively. The final solution, shown in blue, is obtained
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Table 1.2: Material parameters for isothermal modelsa.

Parameterb Value±1σ Parameterb Value±1σ

FeS content [wt%] 20± 20 Bulk modulus K [GPa]
Density ρ [kg/m3] KFe 127± 12

ρm 3350± 250 KFeS 54± 6

ρFe 7225± 75 K ′ = ∂K/∂P

ρFeS 4940± 50 K ′m 4.25± 0.5

Bulk modulus K [GPa] K ′Fe 2.2± 0.2

Km 120± 30 K ′FeS 4.0± 0.2

a These models have been calculated before the paper by Smith

et al. (2012) was published. Therefore the values for the param-

eters are from Harder and Schubert (2001).
b The subscripts m, Fe, and FeS refer to mantle, Fe and FeS.

by iteratively adjusting the value of the radius of the core and recalculating the

density profile with the equation of state. The convergence criterion chosen is that

the mass of the model is accurate to within 1% of M (a value that represents

a good balance between accuracy and computation time). Once the model is

converged, the values of C/MR2 (the normalized moment of inertia) and Cm/C

(the ratio of the moment of inertia of the mantle to the total moment of inertia

of the planet) are calculated through integration of Eq. (1.20). Our model is

spherically symmetric and we can identify C with I. These values can then be

compared with the observed values of C/MR2 = 0.353 ± 0.017 and Cm/C =

0.454± 0.035 (Smith et al., 2012). The solution for the radius of the core rc can

be compared with the value of 2030± 37 km (Smith et al., 2012).

Since the combined measurement of C/MR2 and Cm/C represents one of

the best constraints on the interior structure, it is informative to see how the

isothermal models here constructed are sensitive to the parameters listed in Table
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Figure 1.2: Values for C/MR2 and Cm/C for different sets of isothermal models. The

central point, where the lines intersect, corresponds to the nominal model (FeS = 20%,

ρM = 3350 kg/m3 and ρFe = 7225 kg/m3). The other points are obtained by varying

the parameter listed in the legend by an amount equal to the uncertainty in Table 1.2

(the FeS wt% set has four data points since it goes from 0% to 40% in 10% steps).

1.2. In the following the nominal model is defined as the outcome obtained by

setting the values of the parameters in Table 1.2 at their Value. Different models

are then obtained by changing the value of one parameter by an amount equal

to the 1σ listed in Table 1.2. Figures 1.2 and 1.3 show the result of this process,

where the FeS content in the core and the density of the mantle and of the Fe

component of the core are varied. In Figure 1.2 data points are labeled with

the value of the varied parameter, while in Figure 1.3 they are labeled with the

solution for the radius of the core rc of the model.

From Figures 1.2 and 1.3 the following effects of the variation of the param-

eters on the solution appear: increasing the light element in the core causes the
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Figure 1.3: Same data sets as in Fig. 1.2. Here the labels show the solution for the

radius of the core for the model.

core to expand (since the total massM and the other parameters are kept fixed),

while increasing the total moment of inertia and decreasing the mantle moment

of inertia. Given that the core expands, there is more heavy material far from

the axis (thus C increases) and at the same time the mass of the mantle, which

contributes to Cm/C, decreases. Varying the density of the Fe component of the

core has similar effects both in the moments of inertia values and in the radius

of the core, since the variation of this parameter is qualitatively similar to a vari-

ation of the amount of the light component. The variation of the density of the

mantle has a “perpendicular” effect. A positive variation in the density of the

mantle increases both the moment of inertia of the mantle and the total moment

of inertia. If the mantle is heavier, than it takes a larger fraction of the mass M ,

and as a consequence the radius of the core Rc is smaller. In Figure 1.4 the mod-
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Figure 1.4: Same date sets as in Figure 1.2 and 1.3. This plot allows to compare

the solutions obtained with the isothermal models with the values determined with

MESSENGER data, which are represented by the lined bands.

els here described are compared with the values for C/MR2 and Cm/C published

in Smith et al. (2012). There is only marginal match for the value of C/MR2

for models with a high content of FeS or a heavy mantle. On the other hand all

the models are systematically overestimating the ratio Cm/C. Nevertheless, even

with these simple models both the values of the density of the outer shell and

the radius of the core are compatible with a subset of the more detailed models

appearing in Smith et al. (2012), which are shown in Figure 1.5 for comparison.

Further parallels are difficult to make since Smith et al. (2012) do not describe

the values of all the parameters.
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Figure 1.5: A) Radius of the core. B) Average density of the shell overlying the core.

The star represents the central values for C/MR2 and Cm/C, the black bars are 1− σ

values. From Figure 2 of Smith et al. (2012).

1.3.3 Constant-density layer models

Earth is divided into a metal rich core (itself comprised of a solid inner core and

a liquid outer core) and a rocky outer envelope which is divided into a mantle

surrounded by a crust. The simplest model for a differentiated body is based

on this compositional dichotomy, i.e., it assumes a constant-density core and a

constant-density mantle. The parameters of this model are the core density and

radius, ρc and rc, and the mantle density ρm. The equations for the mean density

and moment of inertia of this model are

ρ = ρc

(rc
R

)3

+ ρm

[
1−

(rc
R

)3
]
, (1.28)

I =
8π

15

[
ρcr

5
c + ρm

(
R5 − r5

c

)]
. (1.29)

If only the two observables ρ and I are available, the system is underdetermined

and one has to make at least one assumption, for example the density of the
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mantle rocks, to retrieve the density and radius of the core.

In the case of Mercury the moment of inertia of the outer solid shell has been

measured (Margot et al., 2012). In the 2-layer model, Im has the expression

Im =
8π

15
ρm
(
R5 − r5

c

)
. (1.30)

The three equations (1.28),(1.29), and (1.30) can then be solved for the three

unknowns rc, ρc, and ρm. The resulting solutions are ρm = 3203 kg/m3, ρc =

7254 kg/m3, and rc = 1998 km. These are all within one standard deviation of

the results of the more elaborate models of Hauck et al. (2013), ρm = 3380 ±

200 kg/m3, ρc = 6980± 280 kg/m3, rc = 2020± 30 km, and of Rivoldini and Van

Hoolst (2013), ρc = 7233 ± 267 kg/m3 and rc = 2004 ± 39 km. It is important

to note that these results are consistent with a wide variety of core compositions

(Hauck et al., 2013) and mantle mineralogies (Rivoldini et al., 2009; Rivoldini and

Van Hoolst , 2013). Therefore the mean density and the two moments of inertia

C and Cm are not very sensitive to the different compositions of the interior.
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CHAPTER 2

The tides of Mercury and possible implications for

its interior structure1

2.1 Abstract

The combination of the radio tracking of the MESSENGER spacecraft and Earth-

based radar measurements of the planet’s spin state gives three fundamental

quantities for the determination of the interior structure of Mercury: mean den-

sity ρ, moment of inertia C, and moment of inertia of the outer solid shell Cm. This

work focuses on the additional information that can be gained by a determination

of the change in gravitational potential due to planetary tides, as parametrized

by the tidal potential Love number k2. We investigate the tidal response for sets

of interior models that are compatible with the available constraints (ρ, C, and

Cm). We show that the tidal response correlates with the size of the liquid core

and the mean density of material below the outer solid shell, and that it is af-

fected by the rheology of the outer solid shell of the planet, which depends on its

temperature and mineralogy. For a mantle grain size of 1 cm, we calculate that

the tidal k2 of Mercury is in the range 0.45 to 0.52. Some of the current models

for the interior structure of Mercury are compatible with the existence of a solid

FeS layer at the top of the core. Such a layer, if present, would increase the tidal
1Padovan et al. (2014a), reproduced by permission of Wiley ( c©2014. American

Geophysical Union. All Rights Reserved).
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response of the planet.

2.2 Introduction

In the absence of an in situ geophysical network, what we know of the interior of

Mercury is based on a combination of Earth-based observations, spacecraft ex-

ploration, and theoretical insight. Earth-based radar observations provide mea-

surements of the obliquity of Mercury and the amplitude of its forced libration

(Margot et al., 2007, 2012). Through radio tracking of the MErcury Surface,

Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft,

the gravitational field of the planet has been determined (Smith et al., 2012).

Given that Mercury is in a Cassini state (Colombo, 1966b; Peale, 1969), the spin

parameters (obliquity θ and angle of libration γ), when combined with the second

harmonic degree components of the gravity field (J2 and C22), provide two im-

portant integral constraints for the interior of Mercury, the moment of inertia C

(Peale, 1969) and, in the presence of a global liquid layer, the moment of inertia

of the outer solid shell Cm (Peale, 1976). These two moments, along with the

mean density ρ, are three constraints that any model of the interior of Mercury

must satisfy (Hauck et al., 2013).

The measurement of the deformation of a planet due to periodic tidal forcing

can be used to place additional bounds on the interior structure, because the

tidal response is a function of the density, rigidity, and viscosity of the subsurface

materials. This property has been applied in the past to support the hypothesis

of a liquid core in Venus (Konopliv and Yoder , 1996) and a global liquid ocean in

Titan (Iess et al., 2012). Yoder et al. (2003) used the measurement of the tides

to reveal the liquid state of the Martian core and to estimate its radius. It is

interesting to note that the interior structures of Venus and Mars are currently
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less well-characterized than that of Mercury, since for Mars the moment of inertia

of the outer solid shell is not known, and for Venus only the mean density and k2

tidal deformation are known, but no moment of inertia information is available.

The motivation for this paper is to explore the information that can be gained

about the interior of Mercury by the combination of the determinations of ρ, C,

and Cm with the measurement of k2, which will indicate the 88-day annual tidal

k2.

We model the tidal response of Mercury for a range of interior structures

that are compatible with the mean density ρ and the moments of inertia C

and Cm (Hauck et al., 2013). The formalism that we employ is described in

section 2.3, and section 2.4 describes the interior models that we use and the

assumptions that we make in the evaluation of the tidal response. The rheology

of the outer solid shell is discussed in section 2.5. The results of our simulations

are presented in section 2.6 (the minor effects of the properties of the inner core

on the tidal response are explored in Appendix C). We discuss the implications of

the detection of the tidal response for the physical characterization of the interior

of Mercury in section 2.7.

2.3 Planetary Tidal Deformation

Mercury’s solar tides are caused by the difference in the gravitational attraction

of the Sun across the planet. Denoting the mass of the Sun byMS, the expression

for the solar tide-generating potential Φ at a point P inside the planet is

Φ =
GMS

d
=
GMS

rS

[
∞∑

n=2

(
r′

rS

)n

Pn (cosψP)

]
=
∞∑

n=2

Φn, (2.1)

where the summation follows from the expansion for (1/d) , and d is the distance

between P and the Sun (e.g., Arfken and Weber , 2005). The angle ψP is the
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angle between r′ and rS, the distances from the center of mass of the body to

P and to the Sun, respectively. Pn indicates the Legendre polynomial of degree

n. G is the gravitational constant. We introduce Φn to highlight the dependence

of Φ on the nth power of the factor (r′/rS) � 1. For a point on the surface,

we set r′ = RM, the radius of Mercury, and rS equal to aM, the semimajor axis

of Mercury’s orbit, and we can express the largest component of the potential

as gζP2(cosψP), where g = (GMM/R
2
M) is the gravitational acceleration at the

surface, MM is the mass of Mercury, ζP2(cosψP) is the height of the equilibrium

tide (Murray and Dermott , 1999), and where

ζ =
MS

MM

(
RM

aM

)3

RM. (2.2)

Among the terrestrial planets ζ is the largest for Mercury, with a value of∼ 1.10 m

(for comparison ζVenus ∼ 0.43 m, ζEarth ∼ 0.16 m, and ζMars ∼ 0.03 m).

The harmonic expansion of the tide-generating potential in equation (2.1) can

be used to identify all the different tidal components (in period and amplitude)

generated by the Sun at Mercury (Van Hoolst and Jacobs , 2003). The largest

component has a timescale equal to the orbital period of Mercury around the Sun

(∼ 88 days). This annual tidal perturbation periodically modifies the shape of

Mercury, and thus the distribution of matter inside the planet, with an accompa-

nying modification of its gravitational field. This modification is parameterized

with the potential Love number k2, which relates the additional potential φ2t due

to the deformation of the planet to the tide-generating potential Φ2 due to the

Sun:

φ2t = k2 (ω) Φ2. (2.3)

The subscript 2 indicates that the main deformation is generated by the largest

term of the expansion, which corresponds to n = 2. The frequency ω indicates that

the response of the body, described by k2, depends on the period (i.e., frequency)
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of the applied forcing, which for the case considered here is the 88-day-period

solar tide.

The study of the deformation of a planet under the perturbation of an external

potential requires the solution of the equations of motion inside the body. Using

a spherical harmonic decomposition in latitude and longitude, we transform these

three second-order ordinary differential equations into six first-order linear differ-

ential equations in radius (Alterman et al., 1959). The motion is controlled both

by material stresses (elastic or viscoelastic) and gravitational forces, the latter

originating from a gravitational potential that is the sum of the self-gravitation

of the planet and the external tidal potential. The framework for the solution

is formally the same both for elastic rheologies and for viscoelastic rheologies,

thanks to the correspondence principle (Biot , 1954). The results presented in the

following sections are obtained by modeling Mercury as a series of homogeneous

incompressible layers. Each layer is characterized by thickness, density, rigidity,

and viscosity (Wolf , 1994). In evaluating the tidal response, we use the formalism

developed by Moore and Schubert (2000).

The possible values for the k2 of a planet range between 0 for a perfectly rigid

body that does not deform, and 1.5, the value for a homogeneous fluid body (for

these idealized bodies the limits are independent of the forcing frequency). Values

for k2 have been determined for Venus (Konopliv and Yoder , 1996), the Moon

(Konopliv et al., 2013b; Lemoine et al., 2013), Mars (Konopliv et al., 2011), and

Titan (Iess et al., 2012). The k2 of the Moon is uncertain at the ∼ 0.5% level, a

result of the high-quality data obtained with the Gravity Recovery and Interior

Laboratory (GRAIL) mission (Zuber et al., 2013). For Mars the estimate is uncer-

tain at the ∼ 5% level, a result obtained by combining data from a large number

of spacecraft missions, including a lander and two years of tracking data from the
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low-altitude, nearly circular orbital phase of the Mars Reconnaissance Orbiter.

For Venus and Titan the estimates have an uncertainty & 10%. A numerical

simulation of the determination of Mercury’s k2 with BepiColombo, the future

dual orbiter mission to Mercury by the European Space Agency and the Japan

Aerospace Exploration Agency, indicates an expected accuracy of ∼ 1% (Milani

et al., 2001). This figure represents a lower bound for MESSENGER, because

its eccentric orbit makes the detection of k2 more challenging. The uncertainty

on the determination of the k2 of Mercury as obtained from MESSENGER is

expected to be ∼ 10% (Mazarico et al., 2014a).

2.3.1 Rheological Models of the Interior

The mantle of Earth responds elastically on the short timescales associated with

the waves generated by earthquakes but flows like a fluid on the geologically long

timescales of mantle convection. The Maxwell rheological model is the simplest

model that captures this short- and long-timescale behavior. It is completely

defined by two parameters, the unrelaxed (infinite-frequency) rigidity µU and the

dynamic viscosity ν. The Maxwell time, defined as

τM =
ν

µU
, (2.4)

is a timescale that separates the elastic regime (forcing period � τM) from the

fluid regime (forcing period � τM). This simple rheological model is sufficiently

accurate for the crust, which is cold and responds elastically, and the liquid core,

which has zero rigidity and therefore a fluid response. The inner core, if present,

has a negligible effect on the tidal response (Appendix C), so for simplicity we

use a Maxwell model to describe its rheology. Nevertheless the Maxwell model

does not provide a good fit to laboratory and field data in the low-frequency

seismological range, and thus it should not be used to model the response of the
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mantle at tidal frequencies (e.g., Efroimsky and Lainey , 2007; Nimmo et al.,

2012).

Jackson et al. (2010) explored three different parameterizations (Burgers, ex-

tended Burgers, and Andrade pseudo-period) to fit torsional oscillation data from

a set of melt-free olivine samples. Both the Burgers models and the Andrade

model provide a good fit for the low-frequency data. The small number of pa-

rameters required for the Andrade model makes it more attractive to model the

rheology of Mercury, for which we lack any ground-truth data. Note, however,

that both the Burgers models and the Andrade model have not been tested at

periods longer than 103 s, so when applied to the study of planetary tidal defor-

mation (period > 106 s) they both need to be extrapolated (for an application

of the extended Burgers model to the mantle of the Moon and Mars see Nimmo

et al. (2012) and Nimmo and Faul (2013), respectively).

We report here the expressions for the real and imaginary part of the dynamic

compliance J(ω) for the Andrade-pseudoperiod model, as described by Jackson

et al. (2010):

JR(ω) =
1

µU

{
1 + β∗Γ(1 + n)ω−n cos

(nπ
2

)}
, (2.5)

JI(ω) =
1

µU

{
β∗Γ(1 + n)ω−n sin

(nπ
2

)
+

1

ωτM

}
(2.6)

The unrelaxed rigidity is µU and β∗ = βµU. The coefficient β, along with n,

appear in the expression of the Andrade creep J(t) = 1/µU + βtn + t/ν, where Γ

is the gamma function and τM the Maxwell time. The frequency ω is obtained

from ω = 2π/XB, where XB is the pseudo-period master variable introduced by

Jackson et al. (2010):

XB = T0

(
d

dR

)−m

exp

[(
−EB

R

)(
1

T
− 1

TR

)]
exp

[(
−V
R

)(
P

T
− PR

TR

)]
, (2.7)
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which takes into account the effects of pressure P , temperature T, and grain-

size d. The subscript R indicates reference value. T0 is the forcing period (for

Mercury ∼ 88 days). The exponent m characterizes the dependence on the grain

size, which in principle can be different for anelastic processes (ma) and for viscous

relaxation (mv). We tested that at the frequency of the Mercury tide, the effect

is minor, and we assumed ma = mv = m. The other quantities are defined in

Table 2.1. The dynamic compliance was evaluated by setting the value of τM in

equation (2.6) equal to the reference value reported by Jackson et al. (2010, Table

2, τMR = 105.3 s), and including the effects of T, P, and d through the pseudo-

period master variable defined in equation (2.7). The dynamic compliance is

related to the inverse quality factor Q−1 and the rigidity µ by

Q−1(ω) =
JI(ω)

JR(ω)
, (2.8)

µ(ω) =
[
J2

R(ω) + J2
I (ω)

]−1/2
. (2.9)

To illustrate the importance of choosing a realistic rheological model, in Figure

2.1 we show how the rigidity of a material with µU = 65 GPa varies as a function

of the forcing frequency for two temperatures, at a pressure of 5.5 GPa, repre-

sentative of conditions at the base of the mantle of Mercury (Hauck et al., 2013).

Both the Maxwell rheological model and the Andrade model are plotted. They

both predict a fluid response (i.e., zero rigidity) at high temperatures and/or long

forcing frequencies, but the Maxwell model underestimates non-elastic effects at

forcing periods that are shorter than the Maxwell time. This effect is particularly

relevant for Mercury, for which the core-mantle boundary temperature may be

above 1600 K (Rivoldini and Van Hoolst , 2013; Tosi et al., 2013).
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Table 2.1: Rheological Models for the Interior of Mercurya.

Layer Model Parameter Definition Value
Crust Maxwell

µU Unrelaxed rigidity 55 GPa
ν Dynamic viscosity 1023 Pa s

Mantle Andradeb

µU Unrelaxed rigidity 59− 71 GPa
Tb Mantle basal temperaturec 1600− 1850 K
n Andrade creep coefficient 0.3
β∗ Andrade creep parameter 0.02
PR Reference pressure 0.2 GPa
TR Reference temperature 1173 K
dR Reference grain-size 3.1 µm
d Grain size 1mm− 1cm
m Grain size exponent 1.31

V Activation volume 10−5 m3mol−1

EB Activation energy 303× 103 kJ mol−1

FeS Andraded

Outer core Maxwell
µU Unrelaxed rigidity 0 Gpa
ν Dynamic viscosity 0 Pa s

Inner core Maxwell
µU Unrelaxed rigidity 1011 GPa
ν Dynamic viscosity 1020 Pa s

a The models are introduced in Section A.2.2.
b The fixed parameters of the Andrade model are based on the results of Jackson

et al. (2010).
c Here we report Tb because the temperature T in equation (2.7) depends on the

temperature profile, which is controlled by Tb.
d The FeS layer is assumed to have the same rheology as that of the base of the

mantle.
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Figure 2.1: Comparison of the Andrade (solid lines) and Maxwell (dashed lines) rheo-

logical models at a pressure of 5.5 GPa for two different temperatures, T = 1400 K (red)

and T = 1800 K (green). The solid colored vertical lines represent the Maxwell times.

The dash-dotted line indicates the forcing frequency of Mercury’s tide. Note that at

T = 1800 K the Maxwell model over-estimates the rigidity at the tidal frequency by

about 35% compared with the Andrade model. The unrelaxed modulus used in these

example is 65 GPa.

2.4 Methods

Throughout this work (except section 2.4.1) we use models compatible with the

available constraints, i.e., mean density ρ, moment of inertia C, and moment of

inertia of the solid outer shell Cm (section 2.2). By compatible we mean that

the distributions of ρ, C, and Cm in the set of interior models considered here

33



are approximately Gaussian with means and standard deviations that match

the nominal values of the observables and their one-standard-deviation errors.

The mean density ρ has a Gaussian distribution with mean and standard de-

viation equal to 5430 kg/m3 and 10 kg/m3, respectively. For C and Cm, we

choose Gaussian distributions with means and standard deviations defined by

the observed values and errors reported by Margot et al. (2012). Accordingly

C/MMR
2
M = 0.346± 0.014 and Cm/C = 0.431± 0.025 (Margot et al., 2012).

The small abundance of Fe and relatively large abundance of S at the surface

of Mercury imply strongly reducing conditions within the planet (Nittler et al.,

2011). Under these conditions both silicon and sulfur likely partitioned into the

core during Mercury’s formation and differentiation (Hauck et al., 2013). Of

the five compositional models for the interior of Mercury analyzed by Hauck

et al. (2013), we focus on two sets that have a Si-bearing core, because they are

consistent with the inferred reducing conditions. The major difference between

the two sets is the presence or absence of a solid FeS layer at the top of the core.

We label these two sets the FeS-set and NoFeS-set, respectively.

The possible presence of an FeS layer was initially predicated on the basis of

the inferred highly reducing conditions and the then-best estimate of the high

mean density of the outer solid shell (Smith et al., 2012). Improved values of

the obliquity θ (Margot et al., 2012) led to a revised value for the mean density

of the outer solid shell (Hauck et al., 2013) and made the density argument for

the presence of the FeS layer less compelling. Nevertheless, the geochemical

argument supporting the presence of the FeS layer is still valid (Hauck et al.,

2013), and a conductive layer above the convective liquid core is one of the possible

explanations for Mercury’s weak magnetic field (Christensen, 2006; Anderson

et al., 2012).
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2.4.1 Radial Density Profile

The radial density profiles that we used as input (Hauck et al., 2013) are given

as series of constant-property layers, going from the center to the surface. The

crust, mantle, and FeS layer are modeled as constant-density shells. This simpli-

fication is justified by the small thickness of the outer solid shell of Mercury and

by the relatively low surface gravitational acceleration but does not affect the

characterization of the interior of the planet on the basis of the measured values

of ρ, C, and Cm (Hauck et al., 2013). The core (inner+outer) is represented with

∼ 1000 layers in order to take into account the effects of self-compression and

temperature in the equation of state for core materials, as was done by Hauck

et al. (2013). However, the Love number k2 is a global parameter, summarizing

the response of the planet to tidal forcing, and it is not very sensitive to the fine

density structure. We verified that k2 calculations can be performed accurately

with simplified, 4- or 5-layer models instead of the original ∼ 1000-layer models.

In order to establish this point, we used a random sample of 100 models drawn

from the FeS-set and constrained only by the mean density ρ of Mercury. For

this test we did not apply the moment of inertia constraints (C and Cm), as this

allowed us to explore a larger parameter space and resulted in a more robust test.

For each one of the 100 models we computed an averaged version, characterized

by five constant-density layers. Computed k2 values for the ∼1000-layer models

and the corresponding 5-layer models are shown in the top panel of Figure 2.2.

Their ratio (Figure 2.2, bottom panel) indicates that errors introduced by using

the simplified models are . 2%. In view of this result and of the ∼ 10% expected

accuracy of MESSENGER’s k2 determination (section 2.3), in what follows we

show results obtained with the simplified 4- or 5-layer models. This approach

reduces the computational cost by ∼ three orders of magnitude.
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Figure 2.2: Effect of the radial density profile on the magnitude of k2. For each of

a set of 100 models, the value of k2 has been calculated both for the ∼1000-layer

version (k2(M)) and for the 5-layer version (k2(Av)). (Bottom) The ratio of the two

determinations, which in most cases is within 2% of unity. The models used for this

plot are constrained only by the mean density of Mercury.

2.4.2 Pressure and Temperature Profiles in the Mantle

To calculate a rheological profile for the mantle of Mercury with the Andrade

rheological model described in Section 2.3.1, the pressure and temperature as a

function of depth must be calculated.

At the radius r in the mantle the pressure is simply obtained as an overburden

load P (r) = g[ρchc+ρmhm(r)], where the subscripts “c" and “m" refer to the crust

and mantle, respectively. hc is the crustal thickness, and hm(r) is the thickness

of the mantle above r (i.e., r + hm(r) + hc = RM).
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Figure 2.3: Temperature (solid line) as a function of depth for a model with a 2020-km

radius core and a 50-km-thick crust. The values for the heat production rate in the crust

and mantle are indicated. The dots represent the midpoint of each mantle sublayer, for

which the temperature and pressure are used to derive a rheology for the sublayer. The

peridotite solidus of Hirschmann (2000) is also shown.

We obtained the temperature profile by solving the static heat conduction

equation with heat sources in spherical coordinates (e.g., Turcotte and Schubert ,

2002) in the mantle and crust:

k
1

r2

d

dr

(
r2dT

dr

)
+ ρH = 0. (2.10)

In equation (2.10) k is the thermal conductivity, ρ is the density, and H is the

heat production rate.

We assumed a homogeneous distribution of heat sources in the crust and in

the mantle. The distribution in the crust might be exponential as in the crust of

the Earth, but we verified that this would only marginally affect the deep-mantle

37



temperature profile. The value of H at the surface, H0, has been inferred from

MESSENGER measurements and is equal to H0 = 2.2×10−11 W kg−1 (Peplowski

et al., 2012). We adopted the surface value H0 for the heat production rate in

the crust, Hc = H0. For the distribution of heat sources in the mantle we used

Hm = H0/2.5, which is compatible with the enrichment factor derived by Tosi

et al. (2013). The value of k is set to 3.3 Wm−1K−1.

As boundary conditions we applied the surface temperature TS and the tem-

perature at the base of the mantle Tb. TS is set to 440 K, a value obtained with

a simple equilibrium temperature calculation. Therefore in our models the tem-

perature profile is controlled by the temperature Tb. There are currently few con-

straints on Tb, but two independent sets of workers (Rivoldini and Van Hoolst ,

2013; Tosi et al., 2013) point to the range 1600-1900 K. We defined two end-

members profiles: a cold mantle with Tb = 1600 K, and a hot mantle with

Tb = 1850 K. We consider Tb = 1850 K as our hot mantle case, since, from the

peridotite solidus of Hirschmann (2000), Tb = 1900 K would result in partial

melting at the base of the mantle (Figure 2.3). We did not consider in this work

the presence of partial melting.

The rheological models described in section 2.3.1 strongly depend on the tem-

perature. Our end-member temperature profiles are obtained under the assump-

tion of a conductive mantle. This assumption is consistent with the results of

Tosi et al. (2013), which indicate that the mantle of Mercury is most likely con-

ductive at the present time. Nevertheless, a present-day convective mantle is

not excluded (Michel et al., 2013; Tosi et al., 2013). A convective mantle for

the Tb = 1850 K case would result in partial melting (Figure 2.3). A convective

profile with Tb = 1600 K would be more dissipative and deformable than the con-

ductive case (since in the convective envelope the temperature is approximately
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constant and equal to Tb), but this effect is similar to a conductive case with a

higher Tb. Our two end-member temperature profiles thus capture the possible

effects of temperature variations in the mantle of Mercury, under the assumption

that there is no partial melting in the mantle.

To model the rheology of the mantle as a function of depth, we divided it into

sublayers. Starting from the core-mantle boundary, we divided the mantle in 40-

km-thick sublayers, as illustrated in Figure 2.3. For each sublayer the pressure

and the temperature at the midpoint were calculated. The complex compliance

for each sublayer was obtained with equations (2.5) and (2.6) of Section 2.3.1.

The rigidity was calculated with equation (2.9). The viscosity is then given by

the expression ν = 1/(JIω). It is the viscosity of a Maxwell model with the

same complex compliance, i.e., with the same rheology. The value of rigidity and

viscosity so calculated were taken as representative of the full sublayer.

The Andrade rheological model has been successfully applied to the descrip-

tion of dissipation in rocks, ices, and metals (i.e., Efroimsky , 2012, and references

therein). The model described in Section 2.3.1 currently represents the best

available Andrade model parameterization that incorporates the effects of tem-

perature, pressure, and grain size on the rheology. However the parameters that

are kept fixed in the model (listed in Table 2.1) are based on laboratory data

on olivine (Jackson et al., 2010). In what follows we apply the Andrade model

of Section 2.3.1 to different mineralogical models for the mantle of Mercury. We

thus assume that the fixed parameters of olivine can be applied to other miner-

als. This assumption is not strictly correct, especially for mantle models in which

olivine is not the dominant phase, but the broad applicability of the Andrade

model to describe materials as chemically and physically different as ices and

silicates indicates that the model we use should provide a good description of the
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rheology of silicate minerals.

2.5 Assessment of the Rheology of the Outer Solid Shell

The unrelaxed rigidity is a parameter required to characterize the rheology and

thus the response to the tidal forcing. Different minerals have different rigidity

values, so the mineral assemblages of the mantle and crust determine their rigidi-

ties. In this section we assess the impact of the composition on the rigidity of

the mantle and the crust. Table 2.2 contains data for minerals that are be used

below in modeling the rigidity of the mantle and crust of Mercury. In addition,

we describe our assumptions in modeling the response of the FeS layer.

2.5.1 Mineralogical Models for the Mantle

For the mineralogy of the mantle, we use the works of Rivoldini et al. (2009) and

Malavergne et al. (2010) as references. Malavergne et al. (2010) calculated the

expected mineralogy of the mantle of Mercury as a function of pressure, given two

different assumed bulk compositions for the whole planet, an enstatite chondrite

(EH) and a Bencubbin-like chondrite (CB). The EH chondrite provides a good

compositional and mineralogical match to the data of the X-Ray Spectrometer

(XRS) on MESSENGER (Weider et al., 2012), which are compatible with the

data from the Gamma-Ray Spectrometer (GRS) (Evans et al., 2012). The XRS

and the GRS are sensitive to the top tens of micrometers and centimeters of near-

surface material, respectively, and the consistency between the results of the two

instruments indicates that the top tens of centimeters of Mercury’s regolith are

vertically homogeneous (Evans et al., 2012). Despite the apparent good agree-

ment between XRS and GRS results and enstatite chondrite compositions, the
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Table 2.2: Minerals Relevant to the Mantle and Crust of Mercurya.

Abbr. ρ0 µ0 µ′P |0 µ′T |0
[kg/m3] [GPa] [GPa/K]

Garnet Grt 3565+760χFe 92+7χFe 1.4 -0.010
Orthopyroxene Opx 3194+799χFe 78+10χFe 1.6 -0.012
Clinopyroxene Cpx 3277+380χFe 67-6χFe 1.7 -0.010
Quartz Qtz 2650 44.5 0.4 -0.001
Spinel Spl 3580+700χFe 108-24χFe 0.5 -0.009
Plagioclase Pl 2750 40.4 2.5 -0.002
Merwinite Mw 3330 81 1.4 -0.014
Olivine Ol 3222+1182χFe 81-31χFe 1.4 -0.014

a Notes: Abbr. denotes mineral abbreviation (Siivola and Schmid , 2007).

A subscript “0" indicates standard ambient temperature and pressure

(298K, 105Pa). Density is ρ. µ, µ′P, and µ
′
T are the rigidity and its pressure

and temperature derivatives, respectively. χFe is the mole fraction of iron.

Data in this table are taken from the compilations of Sobolev and Babeyko

(1994), Vacher et al. (1998), Cammarano et al. (2003), Verhoeven et al.

(2005), and Rivoldini et al. (2009).

metal fraction in EH chondrites is lower than the bulk value for Mercury. The

CB chondrites analyzed by Malavergne et al. (2010) have a higher metallic com-

ponent, and thus might represent another possible building block for Mercury.

Rivoldini et al. (2009) calculated the expected mineralogy for a set of five models

of the mantle of Mercury. These included: an enstatite chondrite model (EC),

similar to the EH case of Malavergne et al. (2010); a model in which the building

blocks for Mercury are matched compositionally by the chondrules of two metal-

rich chondrites (MC) (Taylor and Scott , 2005); a model based on fractionation
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processes in the solar nebula (MA) (Morgan and Anders , 1980); the refractory-

volatile model (TS) of Taylor and Scott (2005); and the evaporation model of

Fegley and Cameron (1987). The latter is not consistent with the high abun-

dance of sulfur, potassium, and sodium in Mercury’s surface materials (Nittler

et al., 2011; Peplowski et al., 2012; Evans et al., 2012). We used the composition

of these six models to estimate a range for the rigidity of the mantle of Mercury.

The mineralogical composition of these models is listed in Table 2.3.

2.5.2 Rigidity of the Mantle

MESSENGER confirmed that the surface of Mercury has an extremely low iron

abundance (Nittler et al., 2011; Evans et al., 2012) and showed that a substantial

fraction of the surface is volcanic in origin (Denevi et al., 2013). The low surface

abundance of FeO is an indication that the source regions of volcanic material

are also FeO poor, since FeO does not undergo major fractionation during partial

melting (Taylor and Scott , 2005). However, under the highly reducing conditions

inferred for Mercury, part of the iron in the silicate shell is present as sulfides

and metal (Zolotov et al., 2013). In calculating the rigidity of the mantle, we

assume that the silicate minerals contain no iron. In other words we assume that

χFe = 0 in Table 2.2. The effects of small amounts of iron-rich minerals are small

compared with the uncertainties introduced by the unknown mineralogy of the

mantle of Mercury. It should be noted, however, that at least for olivine the

rheological properties show a strong dependence on the iron content (Zhao et al.,

2009).

For each mineralogical model of the mantle in Table 2.3 we calculate the

composite rigidity at the reference conditions of TR = 1173 K and PR = 0.2

GPa, required for the Andrade model [equation (2.7)]. First, for each mineral
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Table 2.3: Mineralogical models for the Mantle of Mercury.a

Model Grt Opx Cpx Qtz Spl Pl Mw Ol µc [GPa]

CB – 66 4 22 4 4 – – 59
EH – 78 2 8 – 12 – – 65
MA 23 32 15 – – – – 30 69
TS 25 – – – 8 – 2 65 71
MC 15 50 9 – – – – 26 68
EC 1 75 7 17 – – – – 60

a Notes: Two capital letters identify the model (details in section

2.5.1). CB and EH: Malavergne et al. (2010). MA: Morgan and

Anders (1980). TS and MC: Taylor and Scott (2005). EC: Wasson

(1988). The central part of the table gives the mineralogical con-

tent in terms of the vol.% of its components (after Malavergne et al.

(2010) and Rivoldini et al. (2009)). Mineral abbreviations are de-

fined in Table 2.2. A dash indicates that the mineral is absent. The

composite rigidity µc is evaluated as the Hill rigidity at T = 1173

K and P = 0.2 GPa.

the rigidity at TR and PR is obtained from the parameters in Table 2.2 with the

expression

µU(TR, PR) =

[
µ0 + (T − TR)

dµ

dT
+ (P − PR)

dµ

dP

]
. (2.11)

The composite rigidity is obtained with Hill’s expression, which is an average

between the Reuss and the Voigt rigidities (Watt et al., 1976). Table 2.3 lists the

composite rigidities so derived for the mantle models. The range is 59− 71 GPa.
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2.5.3 Rigidity and Viscosity of the Crust

The surface of Mercury presents a compositional and morphological dichotomy

between the younger smooth plains (SP) and the older intercrater plains and

heavily cratered terrain (IcP-HCT) (Peplowski et al., 2012; Weider et al., 2012).

The majority of the SP, which cover ∼ 27% of the surface of Mercury, are volcanic

in origin (Denevi et al., 2013). From the surface compositional data returned by

MESSENGER, Stockstill-Cahill et al. (2012) modeled the expected mineralogy

of the IcP-HCT and the northern volcanic plains (NVP). The NVP are a large

contiguous area of volcanic smooth plains (Head et al., 2011) that show similar

composition to other smooth plains (i.e., Caloris basin interior) (Weider et al.,

2012). Therefore the mineralogy of the NVP can be taken as representative

of other smooth plains areas. The results of Stockstill-Cahill et al. (2012) are

summarized in Table 2.4. The table also includes the mineralogy for smooth

plains when the effect of uncertainties in the Na abundance are taken into account

(SPNa). These three mineralogies are used to estimate the rigidity of the crust of

Mercury.

Variations in the temperature and pressure of the crust with depth have negli-

gible effects on the rigidities of the individual minerals. Therefore the composite

rigidity is obtained with Hill’s expression using µ0 (Table 2.2) as the rigidity for

each mineral.

The range in crustal rigidity is 51 − 60 GPa, and will likely encompass the

actual rigidity of the crust if the IcP-HCT represents the older crust and the SP

are representative of the younger crust produced by the most recent widespread

episodes of partial melting of the mantle. We use the central value of 55 GPa

as the rigidity of the crust. Its viscosity is set at 1023 Pa s. This choice is not

critical since the crust is cold and responds elastically at the forcing frequency of
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Table 2.4: Composition and Rigidity of the Crust of Mercury.a

Model Ol Opx Pl Spl Qz µc (GPa)

SP 2 44 26 6 22 53-58

SPNa 8 30 57 5 – 51-53

IcP-HCT 2 59 29 1 9 57-60

a Notes: “Model" column: SP stands for smooth

plains, and IcP-HCT stands for intercrater plains

and heavily cratered terrain. SPNa takes into ac-

count the difference that might arise with a dif-

ferent Na abundance (see Stockstill-Cahill et al.,

2012). The central part of the table gives the min-

eralogical composition in weight percent. In the

last column the composite rigidity is calculated

with Hill’s expression. The range in µc for each

model is given by the different amounts of end-

members (i.e., forsterite and fayalite in the olivine

solid-solution series).

the tide.

2.5.4 Rheology of the FeS layer

The procedure used to calculate the rigidity of the mantle minerals cannot be

used for the FeS layer because of a lack of laboratory data. At the relevant

pressures and temperatures of the outer core of Mercury, the FeS would be in the
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FeS V phase (Fei et al., 1995). For FeS V the bulk modulus and its pressure and

temperature derivatives have been measured (Urakawa et al., 2004). There is no

rigidity determination, however. Even the rigidity of troilite (or FeS I, the phase

at standard pressure and temperature) has never been measured (Hofmeister

and Mao, 2003). Nevertheless, an argument illustrated by Hofmeister and Mao

(2003, see their Figure 7) sets µFeS I = 31.5 GPa. From the phase diagram of FeS

(Fei et al., 1995), the conditions at the base of the mantle (P ∼ 5.5 GPa) are

close to the melting curve for FeS V. The corresponding homologous temperature

TH, the ratio of the temperature of the material to the solidus temperature, is

TH > 0.85. It is often assumed that the viscosity is proportional to the exponential

of the inverse of the homologous temperature (e.g., Borch and Green II , 1987).

Therefore the viscosity of the FeS layer at the top of the core would be close to

the low viscosity of the melt. These considerations indicate that the FeS layer, if

present, is weak.

We consider the effects of the FeS layer only in the cold-mantle case (Tb = 1600

K), since for higher temperatures the FeS would be liquid (see the phase diagram

in Fei et al., 1995). We assume that the FeS will have the same rheological

properties as the base of the mantle. This assumption is conservative because at

T = 1600 K the TH of FeS is larger than TH of the silicates and, from the value

of µFeS I, the unrelaxed rigidity of FeS V is likely to be smaller than that for the

silicates.

2.6 Results: Tidal Response and Interior Properties

The results illustrated below show that models of Mercury with a liquid outer

core have k2 & 0.3. For a completely solid model of Mercury (i.e., a model

devoid of a liquid outer core), the value of k2 would be reduced by approximately
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an order of magnitude. Given this variation in the magnitude of k2 between a

completely solid interior and one with a liquid (outer) core, a measurement of the

tidal response would provide a confirmation of the presence of a liquid (outer)

core. Its existence has already been inferred from Earth-based radar measure-

ments (Margot et al., 2007) and also from the interpretation of the magnetic field

detected by the MESSENGER Magnetometer (Anderson et al., 2012). Therefore

the results presented below focus on the models of Mercury with a liquid (outer)

core that have been described in section 2.4.

2.6.1 The Main Parameters Controlling the Tidal Deformation

The tidal response of Mercury is largely controlled by the strength and thickness

of the outer solid shell (OSS), much like the similar case for Europa’s ice shell

(Moore and Schubert , 2000). This result is a consequence of the presence of a

liquid (outer) core, which decouples the shell from the deformation of the deeper

interior. Due to the combined mass and moments of inertia constraints, the

thickness of the OSS depends on the density of the core. This outcome is shown

in the left panel of Figure 2.4, where the tradeoff between core density and liquid

core radius (i.e., OSS thickness) is seen in the color scale that strongly correlates

both with the radius of the liquid core and k2. For these models, µU = 65 GPa and

Tb = 1725 K. A modification of the rheological properties of the OSS, through a

variation of the temperature at the base of the mantle Tb and/or of the unrelaxed

rigidity µU, would modify the response as indicated by the arrows in the figure.

Note, however, that there is only a weak dependence on the density of the OSS

itself, as seen in the right panel of Figure 2.4, where the colors show the density

of the OSS and span nearly the entire range of the response. The small effects of

a solid inner core on the tidal response are discussed in Appendix C.
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Figure 2.4: k2 as a function of the radius of the liquid core for the NoFeS set. For these

data the temperature at the base of the core is Tb = 1725 K and the mantle unrelaxed

rigidity is µU = 65 GPa. Top: Colors indicate the mean density of material below the

outer solid shell (OSS). The arrows indicate how the data points would shift with a

change in the rheological properties of the OSS. Bottom: Same as for the top panel,

but here colors indicate the mean density of the OSS.

The same set of models used in Figure 2.4 are shown in Figure 2.5 in the

form of a plot showing how the compatible models (section 2.4) are distributed.
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Figure 2.5: Same data as in Figure 2.4, here plotted using the normalized population

based on the C and Cm determinations.

The availability for Mercury of the three constraints ρ, C, and Cm results in a

distribution of the data that is relatively narrow, which makes the determination

of k2 in principle very useful. It has the potential for improving the determination

of the location of the radius of the outer liquid core and the mean density of the

material below the outer solid shell, and of providing insights into the rheological

properties (temperature and rigidity) of the outer solid shell. This improved

knowledge will depend both on the precision of the k2 determination and on the

effects of the uncertainties in the temperature and rigidity of the outer solid shell.

2.6.2 Effects of the Mantle Rheology on the Tidal Response

In our models the rheology of the outer shell is controlled by the temperature at

the base of the mantle Tb and the unrelaxed rigidity of the mantle µU. Figure 2.6
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illustrates the effects on the tidal response of a variation in Tb between 1600 K and

1850 K. For this case we assumed an unrelaxed mantle rigidity of µU = 65 GPa.

As expected, on the basis of the influence of temperature on rheology (Figure

2.1), a higher Tb corresponds to a weaker outer solid shell, which in turn has a

larger tidal response. In terms of the central values of the model populations, k2

varies in the range 0.47− 0.50.

Basal mantle temperature and unrelaxed rigidity have similar, if opposite,

effects on the tidal response, which is enhanced by a higher Tb and/or lower

µU and is diminished by a lower Tb and/or higher µU. Therefore, there is a

tradeoff between these two parameters. The full range of tidal responses for the

NoFeS models is illustrated in Figure 2.7. The variation in k2 is in the range

0.45− 0.52, the former value corresponding to the stiff mantle (Tb = 1600 K and

µU = 71 GPa) and the latter to the weak mantle (Tb = 1850 K and µU = 59 GPa).

The values of µU that we use, 59 GPa and 71 GPa, represent the largest and

smallest values derived from the mantle mineralogies analyzed in section 2.5.1

and listed in Table 2.3.

A solid FeS layer can exist only in the Tb = 1600 K case (Section 2.5.4).

Under the assumptions for the rheology of solid FeS at the base of the mantle of

Mercury described in Section 2.5.4, we tested for the effect of the presence of an

FeS layer on the tidal response for the case of Tb = 1600 K. Results are shown in

Figure 2.8. The effect of the weak FeS layer is to increase the tidal response. In

other words, it has the same effect as a higher Tb or a lower µU. In terms of the

central k2 values of the model populations, the presence of the FeS layer increases

the tidal response by ∼ 6%.

The models presented are for a mantle grain size d = 1 cm. A smaller grain

size, d = 1 mm, corresponds to a more dissipative rheology, which induces a larger
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Figure 2.6: Effect of the mantle basal temperature on the tidal response. Predicted

values of k2 for models with unrelaxed rigidity µU = 65 GPa and two different values

of temperature at the base of the mantle Tb = 1600 K (dark blue) and Tb = 1850 K

(brown). Left: k2 as a function of the radius of the liquid core. Right: histogram of k2

for the two sets of models.
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Figure 2.7: Predicted values of k2 for the two end-member NoFeS sets of models.

Golden: weak outer solid shell with mantle basal temperature Tb = 1850 K and un-

relaxed rigidity µU = 59 GPa. Indigo: stiff outer solid shell with Tb = 1600 K and

µU = 71 GPa. Left: k2 as a function of the radius of the liquid core. Right: histogram

of k2 for the two sets of models.
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Figure 2.8: Effect of a solid FeS layer on the tidal response. Predicted values of k2

for models with mantle basal temperature Tb = 1600 K and unrelaxed mantle rigidity

µU = 65 GPa, with (green) and without (dark blue) an FeS layer at the base of the

mantle. Left: k2 as a function of the radius of the liquid core. Right: histogram of k2

for the two sets of models.
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Figure 2.9: Predicted values of k2 for two sets of NoFeS models with the same mantle

basal temperature Tb = 1725 K and the same mantle unrelaxed rigidity µU = 59 GPa.

The two sets differ in the assumed mantle grain size d. Blue: d = 1 cm. Orange:

d = 1 mm. Left: k2 as a function of the radius of the liquid core. Right: histogram of

k2 for the two sets of models.
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tidal response. This effect is illustrated in Figure 2.9 . The effect is substantial,

since in this case k2 varies between 0.48 and 0.52, a larger range than the one

resulting from the variation of Tb illustrated in Figure 2.6.

2.7 Summary and Conclusions

We performed simulations of the tidal response of Mercury, as parameterized by

the tidal Love number k2, for two sets of models of Mercury that are compatible

with the currently available constraints on the interior structure of the planet,

i.e., the mean density ρ, the moment of inertia C, and the moment of inertia of the

outer solid shell Cm. The two sets of models differ in the presence or absence of a

solid FeS layer at the top of the core (section 2.4). The response of the materials

is modeled with viscoelastic rheologies (section 2.3.1). The Maxwell rheological

model is used for the crust, the liquid outer core, and the solid inner core. The

Andrade rheological model is used for the mantle, where the high temperature

and relatively low pressure induce large non-elastic effects (Figure 2.1 and Table

2.1). For the FeS layer we assumed an Andrade rheology that matches the basal

mantle layer. We investigated the effects on the tidal response of the unknown

mantle mineralogy (which determines the unrelaxed rigidity µU), temperature

profile in the outer solid shell (controlled by the mantle basal temperature Tb),

and mantle grain size.

The main findings of the paper can be summarized as follows:

1. The presence of a liquid outer core makes the value of k2 dependent mainly

on three parameters: the radius of the liquid core (Figure 2.5), the mean

density of material below the outer solid shell (Figure 2.4, left panel), and

the rheology of the outer solid shell (Figures 2.6 to 2.9). Since the first two
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have been determined with a precision of better than 5% from ρ, C, and

Cm (Hauck et al., 2013; Rivoldini and Van Hoolst , 2013), a measurement

of k2 is informative with regard to the rheology of the outer solid shell;

2. With available estimates for the temperature at the base of the mantle Tb

(Rivoldini and Van Hoolst , 2013; Tosi et al., 2013), for an unrelaxed rigidity

µU of the mantle appropriate for mineralogical models compatible with

MESSENGER observations (Table 2.3), and with a mantle grain size d =

1 cm, we find that for the NoFeS-set k2 varies in the range 0.45−0.52. This

range is expressed in terms of the central values of the model populations

shown in the right panel of Figure 2.7 and corresponds to models with

(Tb, µU) = (1600 K, 71 GPa) and (Tb, µU) = (1850 K, 59 GPa), respectively.

An order of magnitude reduction in the grain size would result in a & 10%

increase in the tidal response (Figure 2.9);

3. The presence of a solid FeS layer is possible only if Tb . 1600 K (Section

2.5.4). Its effect is to increase the tidal response by ∼ 6% (Figure 2.8). This

result is obtained under the conservative assumption that the FeS layer has

the same rheological properties as the base of the mantle (Section 2.5.4).

The solid FeS may be weaker, in which case its effect would be larger than

the estimate shown in Figure 2.8.

The possibility of improving our understanding of the interior of Mercury

through the interpretation of a measurement of k2 depends on the precision of

the determination obtained by the radio tracking of the MESSENGER spacecraft

(or BepiColombo in the future), and on the uncertainties in the parameters that

affect the tidal response of the planet.

As mentioned in section 2.3, the highly eccentric orbit of MESSENGER makes
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the determination of k2 very challenging. Nevertheless, there are indications that

the solution will converge to a value of ∼ 0.45 ± 0.05 (Mazarico et al., 2014a).

If confirmed, such a result would fall in the lower range of our model responses.

With the preliminary estimate of k2 = 0.45, Figures 2.6 to 2.8 suggest that a cold

mantle model, without an FeS layer, is preferred. For the results presented in

these figures a mantle grain size d = 1 cm was assumed, a value compatible with

the estimated grain size for the mantles of the Moon and Mars (Nimmo et al.,

2012; Nimmo and Faul , 2013). A smaller grain size would result in an increased

tidal deformation (Figure 2.9) and would strengthen the preference for a cold

mantle model, without and FeS layer. Nevertheless, the uncertainties associated

both with the k2 determination and with the modeled distributions are too large

to make a conclusive statement.

Future improvements in the interpretation of k2 can be expected. Our mod-

eling of the tidal response would benefit from improvements in the mineralogical

models of the silicate part (which would reduce the range in the unrelaxed rigidity

µU). No meteorites from Mercury have yet been identified, and there are currently

no plans for a lander or sample return mission to Mercury, so improvements in

compositional models will be based on additional remote sensing measurements,

cosmochemical analogues, experimental petrological observations (e.g., McCoy

et al., 1999; Charlier et al., 2013), and numerical simulations (e.g., Stockstill-

Cahill et al., 2012). Updates in the estimates of the amount of global contraction

of Mercury will inform thermal history models, which in turn put constraints on

the basal mantle temperature (e.g., Tosi et al., 2013).
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CHAPTER 3

Updates on the tides of Mercury

The discussion section in our paper on the modeling of the tides of Mercury

(section 2.7) was based on the preliminary determination of the k2 of the planet

reported in Mazarico et al. (2014b), k2 = 0.45± 0.05. An official estimate based

on the analysis of three years of radio tracking data from the MESSENGER

spacecraft has been subsequently published in Mazarico et al. (2014a). A “pre-

liminary value” of k2 of 0.451± 0.014, which would correspond to an uncertainty

of ∼ 3%, is reported in the abstract of Mazarico et al. (2014a). We refer to this

estimate as Abstract Value (AV). However, in the main body of the article, it is

stated that “accounting for possible systematic effects and biases, a wider range of

k2 = 0.43− 0.50 can thus not be ruled out”, which corresponds to an uncertainty

of ∼ 7.5%. We refer to this estimate as Text Value (TV). In light of this new

estimate(s) of k2 we reassess the conclusions of section 2.7.

3.1 k2 and the rheology of the mantle

In Figure 3.1 we illustrate the trade-off between temperature and rigidity of the

mantle in the tidal response for the NoFeS models. In the left panel we show

the effect of mantle basal temperature on the value of k2 for the stiff mantle

case (µ = 71 GPa, see Table 2.3). In the right panel we show the effect of the

mantle rigidity on the value of k2 for the cold mantle case (Tb = 1600 K). The AV
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Figure 3.1: (Left) Predicted values of k2 for two sets of models with the same mantle

rigidity (µU = 71 GPa) and different mantle basal temperature Tb. Golden: Tb =

1850 K. Indigo: Tb = 1600 K. (Right) Predicted values of k2 for two sets of models with

the same mantle basal temperature (Tb = 1600 K) and different mantle rigidity µU.

Indigo: µU = 71 GPa. Blue: µU = 59 GPa. The values of k2 reported in the abstract

and body text of Mazarico et al. (2014a) are shown.

estimate (dark gray band) suggests a better match to the cold and stiff mantle

case, even if it is also partially compatible both with a hot and stiff mantle (golden

curve) and a weak and cold mantle (blue curve). However, when the TV estimate

(light gray band) is considered, it is clear that a measurement of k2 uncertain

at the 7.5% level is not able to discriminate between temperature and rigidity

effects.

3.2 k2 and the presence of a solid FeS layer

In Figure 3.2 we show again the effect on the value of k2 of the presence of a

solid FeS layer for a mantle basal temperature Tb = 1600 K and an unrelaxed
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Figure 3.2: Effect of a solid FeS layer on the tidal response. Predicted values of k2

for models with mantle basal temperature Tb = 1600 K and unrelaxed mantle rigidity

µU = 65 GPa, with (green) and without (dark blue) an FeS layer at the base of the

mantle. Left: k2 as a function of the radius of the liquid core. Right: histogram of k2

for the two sets of models. The values of k2 as reported in the abstract and body text

of Mazarico et al. (2014a) are shown.

mantle rigidity µU = 65 GPa. A lower bound of Tb = 1600 K for the basal mantle

temperature has been obtained independently and with different methods by Tosi

et al. (2013) and Rivoldini and Van Hoolst (2013). Since the FeS layer can be

present only if Tb . 1600 K, in considering the possible presence of the FeS layer

the temperature is fixed at Tb = 1600 K. We model the rheology of the FeS layer

under very conservative assumptions (section 2.5.4), and the mean value of the

histogram for the FeS set would shift upwards with less conservative assumptions.

The AV estimate of Mazarico et al. (2014a) is then indicative of a standard silicate

mantle, without an FeS layer. However, the TV estimate is partially compatible

with an FeS layer at the bottom of the mantle.
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3.3 Conclusions

The comparison of our models with the estimates of k2 presented in Mazarico

et al. (2014a) highlights the informative potential of an accurate measurement

of k2. The expected accuracy in the k2 determination as obtained by the ESA’s

BepiColombo mission to Mercury (scheduled to be launched in July 2016) is bet-

ter than 1% (Milani et al., 2001). If this expectation is met the European mission

will have the potential to make an important contribution to the understanding

of the interior of Mercury.
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CHAPTER 4

Thickness of the crust of Mercury from

geoid-to-topography ratios

To gain insight into the thickness of the crust of Mercury we use gravity and

topography data acquired by the MESSENGER spacecraft to calculate geoid-to-

topography ratios over the northern hemisphere of the planet. For an Airy model

for isostatic compensation of variations in topography, we infer an average crustal

thickness of 35 ± 18 km. Combined with the value of the radius of the core of

Mercury, this crustal thickness implies that Mercury had the highest efficiency of

crustal production among the terrestrial planets. From the measured abundance

of heat-producing elements on the surface we calculate that the heat production

in the mantle from long-lived radioactive elements 4.45 Ga ago was greater than

5.4×10−12 W/kg. By analogy with the Moon, the relatively thin crust of Mercury

allows for the possibility that major impact events, such as the one that formed

the Caloris basin, excavated material from Mercury’s mantle.

4.1 Introduction

Planetary crusts are formed and shaped during major igneous events such as

magma ocean solidification and large-scale volcanism. These processes affect the

thermo-chemical evolution of the interior through a number of processes (e.g.,
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Elkins-Tanton, 2012), including the partitioning of incompatible heat-producing

elements, which during episodes of partial melting concentrate into the melt and

accumulate in the crust; the modification of the bulk volatile content, given

that volatile elements in near-surface magmas tend to escape to the atmosphere;

and the modification of the internal temperature profile by the transport of hot

material from the deep interior to shallow depths. Characterization of the crust

thus provides information on the origin, differentiation, and subsequent geologic

evolution of a planetary body. For Mercury, in particular, the crust may hold

clues to the still poorly understood processes of formation of this planet.

There have been a number of attempts to constrain the thickness of the crust

of Mercury. Anderson et al. (1996) compared the magnitude of the spherical

harmonic second-degree sectorial gravitational coefficient C22 obtained by radio

tracking of the Mariner 10 spacecraft with the value inferred from the equatorial

ellipticity in elevation, measured with Earth-based radar observations, and con-

cluded that the topography of Mercury at degree 2 is compensated. Under the

assumption of Airy isostasy, they inferred that the thickness of the crust lies in

the range 100 to 300 km.

Lobate scarps observed on the surface of Mercury are interpreted to be the

surface manifestations of large thrust faults (e.g., Strom et al., 1975). Topo-

graphic profiles across thrust faults constrain the deepest extent of faulting to

be 35 to 40 km (Watters et al., 2002). By analogy with thermal limits to brittle

behavior on Earth, the depth of faulting provides a constraint on the subsur-

face thermal structure, and therefore heat flux, at the time of fault formation

(Nimmo, 2002; Watters et al., 2002). Combining this information with a model

for the viscous relaxation of topography and its compensation at the crust-mantle

boundary constrains the crustal thickness to be < 200 km (Nimmo, 2002). This
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value is an upper bound since it was obtained without taking into account the

secular cooling of the planet, which would increase the estimate of early heat flux

and thereby reduce the maximum thickness of the crust (Nimmo, 2002).

Nimmo and Watters (2004) inferred an upper limit of 140 km on the crustal

thickness by combining the inferred maximum depth of faulting with the require-

ment that the base of the crust does not remelt. The latter requirement was

enforced by using a reference melting temperature for crustal materials of 1800

K. For a more likely value of 1500 K, the upper bound on the crustal thickness

would be about 90 km (Nimmo and Watters , 2004).

A joint analysis of gravity and topography data can be used to characterize

the subsurface structure of rocky planets (e.g., Wieczorek , 2007). Smith et al.

(2012) combined the gravity and topography of Mercury measured by the MEr-

cury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER)

spacecraft to produce a map of crustal thickness for the northern hemisphere.

This map was obtained with an assumed value for the mean crustal thickness,

and the uncertainty in this mean value represents the largest uncertainty in the

model (Smith et al., 2012). In this work we calculate spatially localized geoid-to-

topography ratios (GTRs) over the surface of Mercury and interpret these ratios

with the method of spectrally weighted admittances (Wieczorek and Phillips ,

1997). This method has been previously applied to infer the thickness of the

crust of the Moon (Wieczorek and Phillips , 1997; Wieczorek et al., 2006), Mars

(Wieczorek and Zuber , 2004), and Venus (James et al., 2013).
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4.2 Data and Methods

We calculated the geoid of Mercury from the spherical harmonic model HgM005

for the gravitational potential, a model complete to degree and order 50 (Mazarico

et al., 2014a). The shape of the planet was obtained from a spherical harmonic

model of the topography (Neumann, 2014). Since the analysis used here is based

on the relation between gravity and topography, the topographic expansion was

truncated at the same degree as the geoid.

We computed the value of the geoid N and topography h over a global grid

with a constant spacing of about 1.5◦×1.5◦, resulting in almost 20300 grid points.

Both the geoid heights and surface topography were referenced to the same radius,

which we chose to be the mean planetary radius R = 2440 km, and the geoid was

calculated from Brun’s equation, which is a first-order approximation that gives

rise to an error of less than 1 m for Mercury (Wieczorek , 2007, 2015). The GTRs

for each grid point were computed from regressions of geoid and topography data

within spherical caps of radius r according to the equation

N = GTR h+ b0, (4.1)

where b0 is a constant. Our results are insensitive to variations in cap radius

from r = 1250 km to r = 2000 km, though the uncertainty in the GTR from the

regression decreases with increasing cap dimension. From the tradeoff between

spatial resolution and GTR uncertainty, r = 2000 km is our preferred choice for

the radius of the spherical cap. If the geoid signal were due only to lateral varia-

tions in the thickness of a crust of constant density, the b0 term in equation (4.1)

would be zero if all elevations were referenced to the mean planetary radius. A

non-zero b0 is included to account for possible contributions from regional vari-

ations in crustal density, density anomalies in the mantle, or spherical harmonic

65



degree 1 topography (which does not have an expression in the geoid in coordi-

nates for which the origin is at the center of mass). With different statistical tests

(adjusted coefficient of determination, F–test, and Akaike information criterion;

see, e.g., Feigelson and Babu (2012)) we established that a two-parameter model

(GTR and b0) is to be preferred over a one-parameter model with b0 = 0.

The calculated GTR is interpreted in the framework of spectrally-weighted

admittances (Wieczorek and Phillips , 1997). If the GTR is spatially stationary

over the analyzed region, it can be expressed as

GTR =
lmax∑
lmin

WlZl, (4.2)

whereWl is a weighting function that depends on the topographic power spectrum

and is given by

Wl =
Shh(l)∑lmax

lmin
Shh(l)

, (4.3)

and where Shh is the topographic power at degree l. Zl is a degree-dependent

admittance function that relates the harmonic coefficients of the geoid to those

of the topography. In the summations of equations (4.2) and (4.3), the lower

limit lmin is chosen on the basis of consistency with the assumed compensation

mechanism (section 4.3). The upper limit lmax is dictated by the quality of the

measured fields, and it is set to 50, the nominal resolution of the gravitational

field. Note, however, that since the power in planetary topography decreases

with increasing degree (Bills and Rubincam, 1995), the function Wl assigns more

weight to the lowest degrees and the choice of lmax is not crucial. We confirmed

this inference by finding no important difference between results obtained with

lmax equal to 50 and those with lmax equal to 20.

The analytical expression for Zl in equation (4.2) depends on the assumed

compensation model. The differentiated nature of terrestrial planets indicates
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that early in their evolution the temperature of the interior was sufficiently high

for the silicates to be separated from a metallic component that settled to the

core. The temperature of the early crust would have been close to the solidus,

if the crust formed through the solidification of a magma ocean (Elkins-Tanton,

2012) or if it was later modified as a result of giant impacts (e.g., Benz et al.,

1988). Because high temperatures decrease the elastic strength of the lithosphere

(e.g., Kampfmann and Berckhemer , 1985), long-wavelength topographic loads

are not likely to be supported by lithospheric strength (Turcotte et al., 1981).

Therefore we assume that a local compensation mechanism, Airy isostasy, is the

principal mechanism of support of the long-wavelength variations in crustal thick-

ness, which probably formed early in planetary evolution. In the Airy isostatic

compensation model, the excess of surface relief is balanced by a crustal root.

Though the use of a geoid-to-topography ratio cannot prove that Airy isostasy

has been achieved, we note that the same assumption has been used in studies

of the ancient crusts of other terrestrial bodies (Wieczorek and Phillips , 1997;

Wieczorek and Zuber , 2004; James et al., 2013). Regions on Mercury where this

assumption might be invalid are excluded from the analysis (section 4.3). For

Airy isostatic compensation the thickness of the crust H under a surface with

topography h is (e.g., Lambeck , 1988)

H = H0 + h

[
1 +

ρc

ρm − ρc

(
R

R−H0

)2
]
, (4.4)

where H0 is the zero-elevation crustal thickness, the radius of the planet is R,

and ρc and ρm are the densities of the crust and the mantle, respectively, each

assumed to be uniform. The corresponding admittance function Zl is given by

the expression (e.g., Lambeck , 1988)

Zl =
3

2l + 1

ρc

ρ

[
1−

(
R−H
R

)l
]
, (4.5)
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with ρ the mean density of the planet. Equations (4.2) and (4.5) show that,

under the assumption of a given compensation mechanism and for a given choice

of the crustal density ρc, measurements of the GTR can be inverted for the crustal

thickness H.

By calculating the normative mineralogy from the elemental abundance mea-

surements of Weider et al. (2012), we estimated the grain density of the northern

volcanic plains material and the material in Mercury’s heavily cratered terrain

and intercrater plains to be 3014 kg/m3 and 3082 kg/m3, respectively. Our cal-

culated mineralogies for these two units compare favorably with those from the

petrological modeling of Stockstill-Cahill et al. (2012). Allowing for a porosity of

up to 12% that might extend down to the mantle, as has been demonstrated for

the Moon (Wieczorek et al., 2013), we consider a conservative range in crustal

densities of 2700–3100 kg/m3. For comparison, Anderson et al. (1996) assumed a

crustal density ρc of 3000 kg/m3, Nimmo (2002) and Nimmo and Watters (2004)

adopted ρc = 2800 kg/m3, and Smith et al. (2012) assumed a value for ρc of 3100

kg/m3. Our range in crustal density, derived from data returned by MESSEN-

GER and the possibility of a Moon-like porosity for the crust, encompasses all of

these values.

4.3 Results

The orbit of MESSENGER is highly eccentric, and the periapsis latitude has var-

ied between 60◦ and 85◦N. The reconstructed gravitational field in the southern

hemisphere, where MESSENGER is at high altitudes, is thus of low resolution.

This result is exemplified by the degree strength of the gravitational field, which

describes the location-dependent harmonic degree at which the signal-to-noise

ratio of the data is equal to one (Konopliv et al., 1999). A map of the degree
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strength for Mercury shows that the degree strength increases as a function of lat-

itude, from about 15 on the equator to 36 near the north pole (Mazarico et al.,

2014a). Over the southern hemisphere there is little altimetry data, so in our

analysis we considered data only from Mercury’s northern hemisphere.

Large areas on the surface of Mercury are covered by smooth plains, the

majority of which are inferred to be volcanic in origin (Denevi et al., 2013). If

the lavas that formed these plains erupted when the lithosphere was sufficiently

thick to support surface loads, these regions might not satisfy our assumption of

Airy isostasy. Moreover, a number of large impact craters and basins have been

identified on Mercury (Fassett et al., 2012) and, as is the case on the Moon and

Mars, these features might depart from local isostasy (e.g., Melosh et al., 2013).

We excluded from the analysis all data within the rims of impact basins having

diameters greater than 490 km and all regions covered by mapped expanses of

smooth plains, as illustrated in Figure 4.4, in the Supplementary Materials, or

SM (section 4.7). We tested that a smaller cutoff diameter for large basins did

not modify the derived crustal thickness.

In the calculation of the value of the GTR within a given spherical cap, all

points on smooth plains, inside large craters, or located in the southern hemi-

sphere were discarded. If the fraction of discarded points within the cap exceeded

50%, the GTR value for that cap was discarded. (The error in the GTR value

for each cap is typically smaller than 10%.) The calculated GTR as a function

of the high-pass filter lmin for remaining areas on Mercury’s surface is plotted in

Figure 4.1; the error shown for each degree corresponds to the standard deviation

of the population of GTRs obtained from the analysis. For lmin = 2 the GTR is

about 38 m/km. This value is much larger than the GTRs for lmin > 2, and it is

not included in Figure 4.1 for clarity. For lmin from 3 to 6 the value of the GTR
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Figure 4.1: (Left) Geoid-to-topography ratio as a function of the high-pass filter

cutoff lmin applied to the geoid and topography data. Values are obtained by re-

gressing the two datasets within spherical caps of 2000 km radius and including

only those regions compatible with the assumption of Airy isostasy. The signal

interpreted as due to Airy-compensated crust is shown in black. (Right) Theo-

retical relation between GTR and crustal thickness for a crustal density of 2900

kg/m3, and for different values of the high-pass filter cutoff lmin.

is also high, with values between 16 and 21 m/km. The GTR decreases for lmin

from 7 to 8, and then for greater values of lmin the GTR is relatively constant

at a value of about 9 m/km. The GTRs steadily decrease with increasing lmin

beyond 16, a figure that corresponds approximately to the degree strength of the

gravitational field at the equator. Therefore, we interpret this decrease to be a

reflection of the decrease in the quality and resolution of the gravity field with

increasing degree above this cutoff.

We also calculated the GTR as a function of the high-pass filter cutoff lmin

for regions initially excluded because of a possible incompatibility with the as-

sumption of Airy isostasy (i.e., smooth plains and large craters in the northern

hemisphere, Figure 4.4, SM). In contrast with Figure 4.1, the near-constant value
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of GTR between degrees 9 and 15 is absent, whereas values of GTR for lmin < 9

are compatible with those in Figure 4.1 (see Figure 4.5, SM). This difference in

behavior for lmin from 9 to 15 justifies our assumption that the compensation

state of basins and smooth plains differs from that for the surrounding heavily

cratered terrain and intercrater plains. Under Airy isostasy, the predicted GTRs

should be nearly uniform and independent of the value of lmin. Therefore we re-

gard the near-constancy of GTR values in Figure 2 between lmin = 9 and 15 as a

signal of Airy isostasy for those length scales.

A possible interpretation of the variation of GTR with lmin < 9 is that the

ratios at these long wavelengths include contributions from Mercury’s mantle.

Such variations could be the result of mantle convection, lateral variations in

mantle composition (Charlier et al., 2013), or lateral variations in temperature.

To further investigate this possibility we explore the behavior of the parameter b0

from equation (4.1). For increasing lmin the residual signal in b0 is concentrated

in the Caloris basin and the northern smooth plains, locations where non-Airy

isostatic signals are expected (Figure 4.6, SM). In contrast, for those regions

compatible with the assumption of Airy isostasy, b0 is found to decrease with

increasing lmin, and for lmin greater than about 7–9, this value is close to zero.

This outcome further supports our interpretation that the GTRs for lmin ≥ 9 are

a result of Airy isostasy.

Although the mantle of Mercury is likely to be in a conductive state at present,

a currently convecting mantle cannot be ruled out (Michel et al., 2013; Tosi et al.,

2013). To test whether the GTR signal for lmin < 9 might include a contribution

from convection in the mantle, we compared the power spectra of the observed

topography and geoid with those obtained from a representative simulation of

the thermochemical evolution of Mercury in which the mantle is still convect-
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ing today. These convection simulations were performed in a three-dimensional

spherical shell with the code Gaia (Hüttig and Stemmer , 2008) following the

methods of Tosi et al. (2013), but constrained by recently revised estimates of

the global contraction of the planet (at least 5.8 km) since the end of the late

heavy bombardment of the inner solar system (Byrne et al., 2014). Calcula-

tion of the geoid and dynamic topography with Gaia has been validated against

well-established semi-analytical solutions (Hüttig et al., 2013).

The geoid and topography spectra from the simulations (Figure 4.7, SM) are

orders of magnitude smaller than the observed spectra, indicating that even if the

mantle were still convecting, this signal should not bias the observed GTR. We

note that this result contrasts with previous convection simulations of Redmond

and King (2007), who obtained variations in the geoid of tens of meters. Michel

et al. (2013) showed that the current mode of heat transport in the mantle of Mer-

cury depends on the thickness of the planet’s silicate shell, with strong convection

favored for greater values of the depth to the core-mantle boundary. Redmond

and King (2007), using pre-MESSENGER information, assumed a value of 600

km for the thickness of the mantle, in contrast to the value of ∼ 400 km implied

by MESSENGER observations (Hauck et al., 2013; Rivoldini and Van Hoolst ,

2013). This, along with their use of a Cartesian domain for their simulations, is

the likely explanation for the difference between their results and the simulations

presented here.

In addition to a signal derived from Airy isostasy, there may also be a con-

tribution to the GTR at long wavelength from lateral variations in temperature

within Mercury. Mercury has a very low obliquity (Margot et al., 2012) and a

highly eccentric orbit (Correia and Laskar , 2004) and is locked in a 3:2 spin–orbit

resonance (Colombo, 1965; Pettengill and Dyce, 1965). As first pointed out by
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Soter and Ulrichs (1967), the combination of these characteristics results in two

equatorial locations that are sub-solar at perihelion (Mercury’s “hot poles" at lon-

gitudes 0◦ and 180◦E), and two equatorial locations that are sub-solar at aphelion

(Mercury’s “warm poles" at longitudes 90◦ and 270◦E). The highest insolation

occurs at the hot poles and results in an average temperature difference between

hot and warm poles of about 130 K (Soter and Ulrichs , 1967). Mercury’s “cold

poles" are at the north and south rotational poles. Phillips et al. (2014) showed

that the degree-2 gravity and topography signal is likely dominated by thermal

effects resulting from subsurface temperature anomalies induced by the surface

temperature pattern. A spherical harmonic expansion of the surface tempera-

ture shows that the greatest power is concentrated in degrees 2 (∼ 90%) and 4

(∼ 10%). It is thus probable that both the degree 2 and 4 signal in the GTR are

affected by thermal anomalies associated with variations in surface insolation, so

these degrees should be excluded from the GTR analysis. For all of the above

reasons, we restrict the remaining discussion to GTR values obtained with lmin

in the range 9 to 15 (black points in Figure 4.1).

The theoretical relation between GTR and crustal thickness, obtained from

equations (4.2) and (4.5) with a crustal density ρc = 2900 kg/m3, is shown in

Figure 4.1 (right). From this relationship, the crustal thickness corresponding

to each calculated GTR was estimated, and since the average elevation of each

analysis region is not always equal to zero, we estimated the corresponding crustal

thickness at zero elevation under the assumption of Airy isostasy from equation

(4.4). For a mantle density ρm = 3300 kg/m3, a histogram of the inferred zero-

elevation crustal thickness H0 is shown in Figure 4.2 for lmin from 9 to 15. As for

the GTR, the error shown for each degree is taken to equal the standard deviation

of the population of H0 values obtained from the GTR values. The average value

of H0 is approximately independent of the value of the high-pass filter cutoff, and
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Figure 4.2: Average crustal thickness at zero elevation H0 of Mercury obtained

from the calculated GTR (black symbols in Figure 4.1, left) for a crustal density

of 2900 kg/m3 and a mantle density of 3300 kg/m3. (Top) Average and stan-

dard deviation of H0 as functions of the high-pass filter cutoff lmin. (Bottom)

Histograms of the calculated crustal thickness H0.

the uncertainty decreases somewhat with increasing lmin. A conservative estimate

for the thickness of the crust of Mercury is obtained by combining the results

for lmin = 9, which has the largest uncertainty, with our calculated bounds on

the crustal density of 2700 and 3100 kg/m3. For our best-fit crustal thickness, we

give the average obtained from the upper and lower bounds on crustal density

for lmin = 9, and for uncertainty we give the maximum of the corresponding one-

standard-deviation limits. On this basis, we obtain an average crustal thickness

of the planet of H0 = 35± 18 km.
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4.4 Discussion and Implications

Our estimate for the average crustal thickness of Mercury is considerably less

than previously reported values. The value obtained by Anderson et al. (1996)

is seemingly in contradiction with ours, and we re-evaluate their estimate with

updated MESSENGER-derived values of the gravitational and topographic C22

terms (Smith et al., 2012; Zuber et al., 2012). Using the same approach as Ander-

son et al. (1996), we revise their estimate downward from 200 to 171 km. If we

were to have inferred the crustal thickness from our GTR analysis by setting the

high-pass filter cutoff lmin = 2, we would have obtained a similarly high crustal

thickness H0 = 160± 32 km. With a silicate shell no more than ∼ 400 km thick,

however, it is highly improbable that the crustal thickness could be so large. The

degree-2 gravity and topography are thus likely to reflect processes other than

local Airy isostasy. Other studies provided only upper bounds on the crustal

thickness (Nimmo, 2002; Nimmo and Watters , 2004), and they are consistent

with our value of 35± 18 km.

The crust of Mercury has a thickness comparable to the thickness of the

crust of the Moon (H = 38.5 ± 4.5 km, Wieczorek et al., 2013), Venus (H =

16.5 ± 8.5 km, James et al., 2013), and Mars (H = 57 ± 24 km, Wieczorek and

Zuber , 2004), as well as that of the continental crust on Earth (H ∼ 35 km,

e.g., Turcotte and Schubert , 2002). The relative size of the radius of the core of

Mercury (∼ 82.5% of the radius of the planet, or 2014 km) (Hauck et al., 2013;

Rivoldini and Van Hoolst , 2013) is the largest among the terrestrial planets. As

a result, the volume of the crust accounts for about 10% of the total volume of

silicate materials in the planet. This value is the highest among the terrestrial

planets and implies that Mercury had the highest efficiency of crustal production.

(For comparison the fraction of silicates in the crust is about 7% for the Moon
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and 5% for Mars, and for Venus the fraction is probably similar to Earth’s value,

i.e., less than 2%.) If the thickness of the northern plains (∼ 2 km) (Head et al.,

2011) is representative of the contribution to the crust crust produced by the

most recent widespread episodes of partial melting of the mantle, then a large

fraction of Mercury’s crust was produced early in its history.

Modeling the thermo-chemical evolution of the terrestrial planets requires

knowledge of the amount of radioactive elements in both the mantle and the

crust (e.g., Schubert et al., 2001), which for Mercury can be evaluated with our

estimate of crustal thickness. The abundances on the surface of Mercury of the

heat-producing elements K, Th, and U have been measured with the Gamma-Ray

Spectrometer on MESSENGER (Peplowski et al., 2011, 2012). If the abundances

of these elements are uniform within a surficial enriched layer, then the thickness

of such a layer can be inferred to lie between about 2 km, the approximate

thickness of the northern plains deposits (Head et al., 2011), and 53 km, our upper

bound on the crustal thickness. The non-enriched part of the crust is assumed to

have the same abundances of incompatible elements as the mantle. With assumed

values of bulk abundances of heat-producing elements in the silicate part of the

planet, it is then possible, by mass balance, to estimate the current abundances

of each of these elements in the mantle and their contribution to heat production

as a function of time. Because the bulk silicate composition of Mercury is not

known, we use two end-member models: the primitive Earth mantle model of

Lyubetskaya and Korenaga (2007) and the CI chondrite model of McDonough

and Sun (1995). For the mean density of the silicate shell of Mercury we use the

value 3380 kg m−3 (Hauck et al., 2013).

The current mantle heat production Qm as a function of the thickness of

the enriched layer is shown in Figure 4.3. The curves correspond to different
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crustal densities and bulk abundance of heat-producing elements. Each curve

is interrupted at the point at which the mass balance calculation returns a zero

abundance for one of the three heat-producing elements. This set of calcula-

tions allows maximum and minimum values for Qm at present to be determined,

respectively, 4.55× 10−12 and 1.88× 10−12 W/kg (the abundances of each heat-

producing element are reported in Table 4.1). From these two values, the mantle

heat production as a function of time can then be calculated (Figure 4.3). A

lower bound on the mantle heat production at a time following accretion and

differentiation (∼ 4.45 Ga, a value obtained by subtracting 100 Ma, a reference

interval of time for the accretion and differentiation of terrestrial planets (e.g.,

Jacobson et al., 2014), from the time of the formation of the Solar System, ∼ 4.55

Ga (Bouvier and Wadhwa, 2010)) is obtained under the assumption that the con-

centration of radioactive elements into the crust dates back to the earliest history

of Mercury. Under such an assumption the mantle heat production would have

been in the range 5.4 × 10−12 to 2.3 × 10−11 W/kg. This interval is consistent

with, but slightly more restrictive than, the lower bound on initial mantle heat

production of 3 × 10−12 W/kg adopted by Redmond and King (2007), and it

partially overlaps the lower range of initial mantle heat production explored by

Michel et al. (2013) (from 1 × 10−11 to 1.25 × 10−10 W/kg). Such a value for

mantle heat production corresponds to a crustal enrichment factor between 3.4

and 14.5; for comparison, the range for this factor assumed by Tosi et al. (2013)

was between 2 and 10.

Models for the formation of major impact basins on the Moon suggest that

some may have excavated mantle material at the time of impact and left such

material exposed on the modern lunar surface (Miljković et al., 2015). The simi-

larly thin crust of Mercury therefore opens the possibility of excavation of mantle

material during the formation of the largest impact basins, such as Caloris. The
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Figure 4.3: Heat production in the mantle Qm from radioactive decay of K,

Th, and U. (Left) Current heat production as a function of the thickness of an

enriched surficial layer for two crustal densities (indicated by the line thickness)

and two bulk silicate abundances derived from the primitive Earth mantle model

of Lyubetskaya and Korenaga (2007) (LyK, dashed lines) and the CI chondrite

model of McDonough and Sun (1995) (CIc, solid lines). The shaded area spans

the interval 2−53 km; the lower limit corresponds to the estimated thickness of the

northern plains deposits (Head et al., 2011) and the higher limit to the maximum

value of the crustal thickness as inferred from the GTR analysis (hashed area).

The minimum and maximum values of Qm are indicated by the hexagon and

the star, respectively. (Right) Mantle heat production as a function of time

for the minimum and maximum values obtained from the left panel. The bold

lines show the total heat production for the CIc model (solid) and the LyK

model (dashed). For the CIc model the contributions of individual isotopes are

also shown. The vertical line indicates the approximate time of completion of

accretion and differentiation of the planet (4.45 Ga).
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identification and characterization of mantle material would provide valuable in-

formation on the composition of the bulk silicate portion of the planet, which

in turn would be informative of the planet’s formation (e.g., Taylor and Scott ,

2005) and interior structure (Hauck et al., 2013; Rivoldini and Van Hoolst , 2013;

Padovan et al., 2014a).

4.5 Conclusions

With gravity and topography data acquired by the MESSENGER spacecraft

we have calculated geoid-to-topography ratios (GTRs) over the northern hemi-

sphere of Mercury. Excluding the longest wavelengths, which are likely to be

sensitive to long-wavelength variations in interior thermal structure associated

with Mercury’s low obliquity and 3:2 spin-orbit resonance, as well as possible

lateral variations in the composition of Mercury’s mantle, we assume that Airy

isostasy is responsible for the remaining signal. This analysis implies that the

average crustal thickness of Mercury is 35± 18 km.

This new mean value is substantially smaller than earlier estimates (Anderson

et al., 1996; Nimmo, 2002; Nimmo and Watters , 2004) and is broadly similar to

the thickness of the crust of the other terrestrial planets and the Moon. Given the

large core size of Mercury, the crust comprises about 10% of the silicate volume,

a value that is the largest among the terrestrial planets and points to a high

efficiency of crustal production. With such a thin crust, it is possible that the

formation of the major impact basins may have excavated mantle material that

is currently exposed on the surface. A search for such exposed mantle material

is warranted in observations acquired by MESSENGER and future spacecraft

missions at Mercury.
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By combining our crustal thickness determination with the abundances of

heat-producing elements on the surface of Mercury measured by MESSENGER

(Peplowski et al., 2011, 2012), we constrain the amount of heat produced in the

mantle over time. Our results are broadly consistent with assumptions made in

previous studies of the thermal evolution of the mantle of Mercury (Redmond and

King , 2007; Michel et al., 2013; Tosi et al., 2013) and can inform future models

of the thermo-chemical evolution of the planet.
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4.7 SM: Supplementary Material

Caloris
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Figure 4.4: Distribution on Mercury of smooth plains (white areas) mapped by

Denevi et al. (2013) and major impact basins having a diameter> 490 km (circles)

identified by Fassett et al. (2012); Mollweide equal-area projection centered on

the 180◦E meridian. In the southern hemisphere (shaded gray) there is little

altimetry data and the gravity field is known only at low resolution.
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Figure 4.5: Geoid-to-topography ratio as a function of the high-pass filter cutoff

lmin applied to geoid and topography data within caps of radius r = 2000 km, in

northern hemisphere regions not compatible with the assumption of Airy isostasy

(i.e., regions shown in white in Figure 4.4).
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Figure 4.6: Maps of the parameter b0 in equation (4.1) as a function of the high-

pass filter cutoff lmin; Mollweide projections, centered on the 180◦E meridian. For

lmin = 7, 8, and 9 the smooth plains associated with the Caloris basin (C) and

the northern volcanic plains (N) are delineated.
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Table 4.1: Heat-producing Elements in the Silicate Portion of Mercury.

U (ppb) Th (ppb) K (ppm)

Surface abundances (observed)
(Peplowski et al., 2011, 2012) 90 155 1288

Bulk silicate abundances (assumed)

Model 1: (McDonough and Sun, 1995) 70 290 550

Model 2: (Lyubetskaya and Korenaga, 2007) 17 63 190

Current mantle abundancesa

Maximum [Model 1]b 20 69 265

Miminum [Model 2]c 6 49 22

a These abundances are calculated from mass balance and a silicate shell density

of 3380 kg m−3 (Hauck et al., 2013).
b This case corresponds to the star symbol in Figure 4.3.
c This case corresponds to the hexagon symbol in Figure 4.3.
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Figure 4.7: Power spectra for the geoid (blue) and topography (red). Solid lines

represent the observed spectra; broken lines are for a thermo-chemical evolu-

tion model with mantle convection at present. The model spectra are orders of

magnitude smaller than the observed spectra.
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CHAPTER 5

Discussion, conclusions, and future work

5.1 Discussion and conclusions

The initial results of the MESSENGER team regarding the interior structure

of Mercury indicated the possible existence of a solid FeS layer at the bottom

of the mantle of the planet (Smith et al., 2012). Such hypothesis was based

both on the high density of the outer solid shell as inferred from geodetic and

radar data (Smith et al., 2012) and on the inference that the planet formed

under highly reducing conditions (Nittler et al., 2011). Of course more standard

models with a silicate-only outer shell, characterized by a mantle and a crust, were

perfectly compatible with the data (Hauck et al., 2013; Rivoldini and Van Hoolst ,

2013). Subsequent improvements in the estimate for the obliquity of Mercury

from Earth-based radar data made the density argument for the presence of a

solid FeS layer less compelling (Margot et al., 2012). However, the geochemical

argument is still valid and a recent paper reporting the results of laboratory

experiments on Mercurian analogs seems to indicate that a solid FeS layer is

indeed a possibility (Malavergne et al., 2014).

From the point of view of the material properties the FeS layer is markedly

different from the silicates that compose the mantle and the crust. We hypoth-

esized that the measurement of the tidal response of the planet might provide

some insights on the presence of this layer. The comparison of one estimate of
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the tidal Love number k2 of Mercury (Mazarico et al., 2014a) with our models

for the tidal deformation of the planet seems to indicate that the presence of a

solid FeS layer at the bottom of the mantle is unlikely. Furthermore the same

comparison seems to indicate that the temperature at the bottom of the mantle

is around 1600 K, in the low range of possible basal mantle temperatures as in-

dependently inferred by Tosi et al. (2013) and Rivoldini and Van Hoolst (2013).

The forthcoming BepiColombo mission to Mercury is expected to provide an im-

proved estimate for the value of k2 of Mercury which will allow to make more

conclusive inferences regarding the temperature of the mantle and the presence

of a FeS layer.

The first paper published by the MESSENGER team on the internal structure

of Mercury included a map of the crustal thickness of the planet obtained from the

joint analysis of the gravity and altimetry data returned by the spacecraft (Smith

et al., 2012). The crustal thickness map in Smith et al. (2012) was obtained

by assuming a constant density of the crust, values for the density of the crust

and the mantle, and a value for the average thickness of the crust. While an

educated guess for the densities of crustal and mantle materials can be based

on the measured surface composition, the assumed value for the average crustal

thickness is rather arbitrary. The only real constraint is that in the resulting

crustal thickness map the thickness is everywhere positive. In Smith et al. (2012)

an average thickness of 50 km was assumed.

We approached the problem of estimating the crustal thickness using the

same datasets as Smith et al. (2012), i.e., gravity and altimetry, but with a

different method. We assumed that Airy isostasy is the mechanism of support

for the long-wavelength topography of Mercury. By limiting the analysis to areas

on the surface that are compatible with our assumed compensation model we
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constrained the crustal thickness by interpreting the geoid-to-topography ratios

with the spectrally weighted admittance model of Wieczorek and Phillips (1997).

We obtained a conservative estimate of 35 ± 18 km. This estimate has three

straightforward yet informative implications. First, a constraint on the value

of the crustal thickness can be used to constrain the amount of heat producing

elements in the mantle if their surface abundances have been measured. Using the

abundances on the surface of Mercury of 40K, 232Th, 235U, and 238U as measured

by MESSENGER (Peplowski et al., 2011, 2012), we put a lower bound of 5.4 ×

10−12 W/kg on the amount of heat produced in the mantle of Mercury after its

primary differentiation. Second, by comparing the volume of the crust of Mercury

with the volume of its mantle we inferred that Mercury produced crustal material

more efficiently than the other terrestrial planets and the Moon. Third, the

relatively thin crust of Mercury points to the possibility that during the formation

of large impact basins mantle material might get exposed on the surface, as

demonstrated in the case of the Moon (Miljković et al., 2013, 2015). This material

might be currently observable.

Summarizing, the main contributions of the work presented in this dissertation

can be listed as follows:

• We pointed out that for Mercury, whose radius of the core is known to a

remarkable precision from the measurement of the moment of inertia and

the moment of inertia of the outer solid shell, the measurement of k2 is in-

formative of the rheology of the outer solid shell. This situation is currently

unlike any other rocky body, since k2 has been previously used only to in-

fer the state (Mars and Venus) and size of the core (Mars). For Mercury

the measured k2 provides an independent evidence for a fluid core (already

inferred from Earth-based radar measurements and from the interpretation
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of the magnetic field detected by the MESSENGER magnetometer);

• The comparison of our modeled values for k2 (between 0.45 and 0.52, de-

pending on the interior structure and rheological properties of the outer

solid shell) with the Mazarico et al. (2014a) estimate based on data ob-

tained with the MESSENGER mission indicates that the presence of a

solid FeS layer at the bottom of the mantle of Mercury is unlikely. Simi-

larly, we infer that the basal mantle temperature is probably in the lower

range of the interval from 1600 to 1900 K obtained from thermal history

calculations and analysis of geodetic data;

• By analyzing gravity and altimetry data, we provide the first relatively well

constrained estimate of the thickness of the crust of Mercury, 35± 18 km.

This estimate is considerably smaller than earlier estimates;

• The estimate for the thickness of the crust is used to investigate implications

about mantle heat production (at least 5.4 × 10−12 W/kg after the initial

differentiation of the planet), efficiency of crustal production in Mercury

(the highest among the rocky bodies of the inner solar system), and pos-

sibility of exposure of mantle material during major basin-forming events

(mantle material might be currently exposed on the surface and thus it

could be observable by MESSENGER and future missions at Mercury).

5.2 Future work

5.2.1 Possible subsurface structure of smooth plains

While investigating the thickness of the crust of Mercury we noted that there

is a clear signal in the geoid associated with the northern volcanic plains and
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Figure 5.1: Possible subsurface structure under large areas of smooth plains, which

in this cartoon correspond to the central columns. The light brown color indicates

a mantle density anomaly with density ρa < ρm, where ρm indicates the density of

mantle material surrounding the anomaly. The crust (mustard) has a density ρc < ρa.

The broken lines indicate the geoid in the absence of the mantle anomaly and of the

thinned crust above it. The solid lines indicate the geoid as modified by the subsurface

structure. a) At low harmonic degrees the geoid is sensitive to the deep subsurface

structure (qualitatively identified with the box), where the mantle anomaly depresses

the geoid with respect to the reference geoid. b) At higher harmonic degrees the geoid is

more sensitive to the shallow subsurface structure, where the thinned crust and denser

material close to the surface correspond to a positive geoid offset.

the Caloris basin, areas that correspond to the largest swaths of smooth plains

on Mercury. The signal is negative at low harmonic degrees and becomes posi-

tive with increasing harmonic degrees (Figure 4.6). One possible explanation for

this finding is that the mantle material under the Caloris basin and the north-

ern volcanic plains is less dense than the surrounding mantle material and the

same regions correspond to a thinner than average crust. The cartoon in Figure

5.1 qualitatively describes this interpretation. The works of Smith et al. (2012)

and James et al. (2014) indeed indicate that the Caloris region and the northern

volcanic plains correspond to regions with a thinner than average crust. Fur-
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Figure 5.2: Smooth plains on the surface of Mercury (tan). Cylindrical projection; the

central longitude is 180◦ E. Figure from Denevi et al. (2013).

thermore, James et al. (2014) show that the Caloris basin is associated with a

negative mantle density anomaly.

5.2.2 A hypothesis for the emplacement of the smooth plains on Mer-

cury

The distribution of the smooth plains of Mercury, the majority of which are

thought to be volcanic in origin, is far from homogeneous (Denevi et al., 2013).

They are concentrated at high latitudes in the northern volcanic plains. At lower

latitudes they are found roughly at longitudes around 180◦ E (i.e., within and

around Caloris basin), and at longitudes around 0◦ (Figure 5.2).

In the modeling of the tides of Mercury we concentrated on the information

contained in the magnitude of k2. However, the k2 of any planet is a complex quan-

tity whose imaginary part is very small and usually not observable. Nonetheless

it is this small imaginary part that encapsulates the energy dissipation in the
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interior of the body (the same dissipation that is responsible for orbital evolu-

tion and that brought Mercury into its current 3:2 spin-orbit resonance). The

power dissipated through tidal processes within a body has a distinct spatial

pattern (e.g., Beuthe, 2013) that depends on the density stratification, temper-

ature profile, and material properties within the body (e.g., Segatz et al., 1988).

The tidally-dissipated power is also dependent on the orbital configuration, as

shown in Běhounková et al. (2010) by comparing the dissipation for a body in

a 1:1 spin-orbit resonance with the dissipation in the case of a 3:2 spin-orbit

resonance.

A relation between the northern volcanic plains and the plains associated with

the Caloris basin seems implied by the similar age shared by the two regions (Head

et al., 2011). However, the northern plains are not related to any impact basin

and Head et al. (2011) concluded that the emplacement of the smooth plains was

independent of the largest cratering events. We put forward the hypothesis that

the impact that formed the Caloris basin delivered an amount of energy that

locally modified the temperature structure in the underlying mantle locally en-

hancing the tidal dissipation that was then focussed elsewhere through convective

and tide-related processes. The possibility of high tidal dissipation is reasonable

given that the mantle of Mercury is only about 400 km thick (Hauck et al., 2013;

Rivoldini and Van Hoolst , 2013) and the temperature at the core mantle bound-

ary is relatively high (Tosi et al., 2013; Rivoldini and Van Hoolst , 2013). As a

consequence, a large fraction of the mantle is at high temperature and therefore

highly dissipative. The addition of energy from the impact would locally increase

the temperature and therefore the dissipation (since in general temperature cor-

relates with dissipation, see, e.g., Figure A.6). The distinct distribution of the

smooth plains, with their latitudinal dependence and concentration around the

meridians of longitude 0◦ and 180◦ E is indicative of a spatially organized process
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such as tidal dissipation (Segatz et al., 1988; Běhounková et al., 2010; Beuthe,

2013).

The possibility of a link between the event that formed the Caloris basin

and the emplacement of the smooth plains associated with Caloris has been

explored in Roberts and Barnouin (2012). The authors investigated how the

effects of the energy delivered in the impact might affect mantle convection and

melt production, but did not take into account tidal dissipation. We plan on

extending the code we used for the calculation of the tides of Mercury to include

the spatial-dependent tidal dissipation. The code will need to be merged with

a convection code to treat both processes together, similarly to the approach

developed in Běhounková et al. (2010). The goal is to test our hypothesis that

the smooth plains associated with the Caloris basin and the northern volcanic

plains are the result of processes related to the impact that formed the Caloris

basin. Additionally we will test how our results are dependent on the spin-orbit

configuration of Mercury at the time of impact. The findings of this project

might be used to investigate the scenario described in Wieczorek et al. (2012),

where the current 3:2 spin-orbit resonance of Mercury is inferred to be the result

of an impact that unlocked the planet from an earlier retrograde 1:1 spin-orbit

configuration.
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APPENDIX A

Background materials for chapter 2.

A.1 Viscoelastic models for the interior of terrestrial plan-

ets

In this section we review the part of the theory of viscoelasticity which is relevant

to the calculation of the tidal deformation of a planetary body. The section is

not meant to be self-contained. We point to the relevant literature while giving

the derivations where they are missing in the references cited. The source of

the material is Wolf (1994), unless otherwise noted. The paper by Wolf (1994)

deals with a homogeneous planet. Because we are interested in the response

of a multi-layer planet, we will extend the theory presented in Wolf (1994) to

the case of a multi-layer planet. The approach is the same as in Moore and

Schubert (2000), where the tidal response of Europa was estimated. Some of the

derivations presented here are only available in a document written in German

(Wieczerkowski , 1999).

In terms of notation, the following conventions are adopted. Vectorial quan-

tities are indicated with bold symbols (e.g., vector u). The only exception is the

differential operator ∇, which cannot induce confusion. Components of a vector

are indicated by a subscript (e.g., vector component ui). Unit vectors are indi-

cated with a hat (e.g., ε̂). Einstein convention is adopted, where repeated indexes

imply summation (e.g., u = uiε̂i indicates the vector u in terms of its components
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ui in the basis with components ε̂i). A comma in the subscript indicates spatial

derivative with respect to the quantities following the comma (e.g., ui,j is the

derivative of the ui component with respect to the j coordinate). Matrices are

indicated with uppercase bold fonts (e.g., the matrix A.)

A.1.1 Models for the planets

We consider a spherical planet whose physical properties (density, elastic param-

eters, viscosity) are assumed to be constant, except at spherical interfaces. The

inclusion of the self gravitation in the elastic equations for a spherical body is

due to Love (1911). The initial state is assumed to be that of a spherically sym-

metric hydrostatic body. The equations describing this state are introduced in

section A.1.2. The tidal force acting on the planet is considered as an infinites-

imal perturbation which modifies the initial hydrostatic state. In the presence

of the perturbation the total fields (by field we mean all the relevant physical

variables of the problem) are the sum of the initial fields and of the incremental

fields resulting from the perturbation. The symmetry of the problem warrants

the use of spherical coordinates.

A.1.2 Equations for the initial fields

The initial fields are those describing the hydrostatic equilibrium of a body under

its own gravitational potential. This assumption implies that the initial state of

the material is that of a fluid where deviatoric stresses vanish. Indicating with

the superscript (0) quantities in the initial fields, with P the pressure, and with

ρ the local density, the hydrostatic equilibrium equation reads

P,r = −ρφ(0)
,r . (A.1)
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The gravitational potential φ inside the body is described by Poisson’s equation

∇2φ(0) = φ
(0)
,ii = −4πGρ. (A.2)

The gravitational field g is derived from the gravitational potential as

g
(0)
i = φ

(0)
,i . (A.3)

A.1.3 Solution for the initial fields

The unperturbed body is spherically symmetric and only the radial derivatives

are different from zero. The solution for the gravity and the potential is obtained

by dividing the planet into thin spherical shells and evaluating the contributions

of the material above and below an empty shell defined by the radii r′ − ε and

r′+ε. The solutions are then obtained by taking the limit for ε→ 0 (e.g., Ramsey ,

1949). For a homogeneous planet:

φ(0)(r < R) =
2

3
πGρR2

(
3− r2

R2

)
, (A.4)

φ(0)(r > R) =
GM

r
, (A.5)

g(0)(r < R) = −4

3
πρGr, (A.6)

g(0)(r > R) = −GM
r2

, (A.7)

where r is the radial coordinate and R is the radius of the planet. The solution

for the pressure P (0) is:

P (0)(r < R) =
2

3
πGρ2

(
R2 − r2

)
. (A.8)
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A.1.4 Incremental fields and interface conditions

For the models described in section A.1.1, the material form1 of the incremental

fields is described by the following set of equations (the details of the derivation

are given in Wolf , 1993)

ui,i = 0, (A.9)

t
(δ)
ij = −δijP (δ) +

∫ t

0

m(t− t′)∂t′ [ui,j + uj,i]dt
′, (A.10)

t
(δ)
ij,j + P

(0)
,j uj,i + ρ(φ

(δ)
,i − φ

(0)
,j uj,i) = 0, (A.11)

g
(δ)
i = φ

(δ)
,i − φ

(0)
,j uj,i, (A.12)

φ
(δ)
,ii − 2φ

(0)
,ij ui,j − φ

(0)
,i ui,jj = 4πGρui,jj. (A.13)

In the previous equations t indicates the time variable and the superscript (δ)

indicates the material increment. Equations (A.9)-(A.13) represent the condition

of incompressibility (with ui the i-th component of the displacement), the con-

stitutive relation (with m(t− t′) the stress-relaxation function), the equations of

motion, the gravity perturbation, and the perturbation of the potential, respec-

tively. Indicating with n
(0)
i the outward unit normal, at each internal interface

the continuity of the incremental fields is expressed as

[ui]
+
− = 0, (A.14)[

n
(0)
j t

(δ)
ij

]+

−
= 0, (A.15)[

φ(δ)
]+
− = 0, (A.16)[

n
(0)
i

(
φ

(δ)
,i − φ

(0)
j uj,i

)]+

−
= 0. (A.17)

1The description of the deformation can be made in terms of the undeformed state (i.e.,
hydrostatic equilibrium) or of the deformed state. In the former case the independent variable
is the spatial coordinate in the undeformed state and it is used to describe material points.
This description is referred to as Lagrangian formulation. In the latter case the independent
variable is the spatial coordinate of the deformed state and it is used to describe local points.
This description is referred to as Eulerian formulation. In the problem of (visco-)elasticity, the
Lagrangian formulation is preferred since the initial state is known (e.g., Malvern, 1969).
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The notation [f ]+− indicates the difference between the quantity f evaluated on

the two sides of the interface. Equations (A.14)–(A.17) represent the continuity of

deformation, incremental stress, incremental potential, and incremental potential

gradient, respectively.

To treat viscoelastic problems, the equations are Laplace transformed, since

in the frequency domain the viscoelastic problem is formally equivalent to the

elastic one, thanks to the correspondence principle (Biot , 1954). Indicating with

s the frequency the Laplace transform of f is f̃ = L[f ] :=
∫∞

0
f(t) exp(−st)dt.

With the following relations (e.g., LePage, 1980)

L [af(t) + bg(t)] = af̃(s) + bg̃(s), (A.18)

L [f,t(t)] = sf̃(s)− f(0), (A.19)

L
[∫ t

0

f(t− t′)g(t′)dt′
]

= f̃(s)g̃(s), (A.20)

the set of equations (A.9)-(A.13) can be directly recast in the frequency domain.

To simplify the set of equations (A.9)–(A.13) Wolf (1994) introduced the New-

tonian formulation, which is used to describe isopotential points. These points

are defined as “points that can only move in the direction of the gradient of the

gravitational potential... the potential at the point remains constant while the

latter is being displaced" (Wolf , 1994). Expressing the pressure and the stress

material increments in terms of their isopotential increments (i.e., using the New-

tonian formulation with the superscript (∂) indicating the increment), and the

gravity and potential material increments in terms of their local increments (i.e.,

using the Eulerian formulation with the superscript ∆ indicating the increment),

the set of equations (A.9)–(A.13) becomes in the frequency domain (the details
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of this cumbersome transformation are found in Chapter 2 of Wolf , 1993):

ũi,i = 0, (A.21)

t̃
(∂)
ij = −δijP̃ (∂) + sm̃(ũi,j + ũj,i), (A.22)

t̃
(∂)
ij,j = 0, (A.23)

g̃
(∆)
i = φ̃

(∆)
,i , (A.24)

φ̃
(∆)
,ii = 0. (A.25)

This approach separates the mechanical quantities from the gravitational quan-

tities (compare Eq. (A.11) and Eq. (A.23)). The coupling is shifted to the

interface conditions, which become

[ũi]
+
− = 0, (A.26)[

n
(0)
j t̃

(δ)
ij − ρn

(0)
i

(
φ̃(∆) + φ̃

(0)
,j ũj

)]+

−
= 0, (A.27)[

φ̃(∆)
]+

−
= 0, (A.28)[

n
(0)
i (φ̃

(∆)
,i − 4πGρũi)

]+

−
= 0. (A.29)

Following Wolf (1994) and introducing the (Laplace transformed) rotation, de-

fined by2

ω̃k =
1

2
εijkũk,j, (A.30)

eq. (A.23) becomes, with eq. (A.22)

P̃
(∂)
,i + 2sm̃εijkω̃k,j = 0, (A.31)

since ũi,ji = ũi,ij = [ũi,i],j = 0. Correspondingly, the stress continuity condition,

eq. (A.27), can be expressed in terms of the pressure by inserting eq. (A.22):[
n

(0)
i P̃ (∂) − 2sm̃ε̃ji + ρn

(0)
i

(
φ̃(∆) + φ̃

(0)
,j ũj

)]+

−
= 0, (A.32)

where ε̃ is the Laplace transformed strain tensor ε̃ij = 1
2

(ũi,j + ũj,i) .

2The symbol ε indicates both the strain tensor, when it appears with two indexes as in eq.
(A.32), and the Levi-Civita tensor, when appearing with three indexes as in eq. (A.31)
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A.1.5 Incremental fields and interface conditions in spherical coordi-

nates

To make the notation less cumbersome, in the following of this chapter the f̃

notation to indicate the Laplace transform of a quantitiy f will be dropped. Also,

the product sm̃ will be substituted by q. The spherical equations of the system are

more readily obtained if the vectorial equations are used first. The vectorial forms

of the incompressibility condition, eq. (A.21), rotation, eq. (A.30), equations of

motion (A.31), and Poisson’s equation (A.25) are:

∇ · u = 0,

ω − 1

2
∇× u = 0,

∇P (∂) + 2q∇× ω = 0,

∇2φ(∆) = 0.

(A.33)

By applying the differential operators in spherical coordinates from Appendix B

the following system of equation is directly obtained:

sin θ(r2ur),r + r(uθ sin θ),θ +
uφ,φ
sin θ

= 0,

2rωλ − (ruθ),r + (ur),θ = 0,

r sin θP (∂)
,r + 2q

[
ωθ,λ − (sin θ ωλ),θ

]
= 0,

P
(∂)
,θ + 2q

[ ωr,λ
sin θ

− (r ωλ),r

]
= 0,

g(∆)
r − φ(∆)

,r = 0,

sin2 θ
(
r2 g(∆)

r

)
,r

+
(

sin θ φ
(∆)
,θ

)
,θ

+
(
φ

(∆)
,λλ

)
= 0.

(A.34)

where the incremental radial gravity g(∆)
r is introduced.

The interface conditions in spherical coordinates are obtained as follows. The

continuity of the displacement, eq. (A.26), simply translates into the continuity
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of its components:

[ur]
+
− = 0, (A.35)

[uθ]
+
− = 0 (A.36)

[uλ]
+
− = 0. (A.37)

The only non zero component of n(0)
i is nr, according to the assumption of an

initial hydrostatic state (section A.1.1). Accordingly, the condition for the con-

tinuity of the stress across interfaces, eq. (A.32), splits into two components. If

i = j = r eq. (A.32) gives:

[
P (∂) − 2qur,r + ρ

(
φ(∆) + φ(0)

,r ur
)]+
− = 0 (A.38)

If i 6= r, and j = r, then from the same equation, the only component remaining

is [qεrθ]
+
− = 0. Using eq. (B.9) with i = r and j = θ, this corresponds to the

condition

[q (ur,θ + ruθ,r − uθ)]+− = 0. (A.39)

The continuity of the potential, eq. (A.28), is not affected by the change of

coordinates, i.e., [
φ(∆)

]+
− = 0. (A.40)

The interface condition for the potential gradient, eq. (A.29), becomes in spher-

ical coordinates: [
φ(∆)
,r − 4πGρur

]+
− = 0. (A.41)

The solution of the system of partial differential equations (A.34) must satisfy,

at internal interfaces, the conditions represented by equations from (A.35) to

(A.41). The boundary conditions at the center and at the surface are discussed

in section A.1.9.

101



A.1.6 Integration of the system of equations (A.34)

The forcing is given by the tidal potential described in section 1.2.3. The har-

monic forcing induces harmonic perturbations. Thus the variables are written in

terms of spherical harmonics Y m
n (cos θ, λ) = Pnm(cos θ) exp[imλ], with n and m

the degree and order of the harmonic, respectively.

ur(r, θ, λ, s) =
∑
nm

Um
n (r, s)Y m

n (cos θ, λ),

uθ(r, θ, λ, s) =
∑
nm

V m
n (r, s)

∂Y m
n (cos θ, λ)

∂θ
,

uλ(r, θ, λ, s) =
∑
nm

V m
n (r, s)

sin θ

∂Y m
n (cos θ, λ)

∂θ
,

ωr(r, θ, λ, s) =
∑
nm

Λm
n (r, s)Y m

n (cos θ, λ),

ωθ(r, θ, λ, s) =
∑
nm

Ωm
n (r, s)

sin θ

∂Y m
n (cos θ, λ)

∂λ
,

ωλ(r, θ, λ, s) = −
∑
nm

Ωm
n (r, s)

∂Y m
n (cos θ, λ)

∂θ
,

P (∂)(r, θ, λ, s) =
∑
nm

Pm
n (r, s)Y m

n (cos θ, λ),

φ(∆)(r, θ, λ, s) =
∑
nm

Φm
n (r, s)Y m

n (cos θ, λ),

g(∆)(r, θ, λ, s) =
∑
nm

Gm
n (r, s)Y m

n (cos θ, λ),

(A.42)

With the associated Legendre differential equation

d2

dθ2
Pnm(cos θ)+cot θ

d

dθ
Pnm(cos θ)+

[
n(n+ 1)− m

sin2 θ

]
Pnm(cos θ) = 0, (A.43)
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the substitution of expressions (A.42) in the system of equations (A.34) gives:

2Um
n + rUm

n,r − n(n+ 1)V m
n = 0,

Um
n − V m

n − rV m
n,r − 2rΩm

n = 0,

rPm
n,r + 2n(n+ 1)µΩm

n = 0,

Pm
n + 2q(Ωm

n + rΩm
n,r) = 0,

(A.44)

 Gm
n − Φm

n,r = 0,

n(n+ 1)Φm
n − 2rGm

n − r2Gm
n,r = 0.

(A.45)

The braces collect the equations for the mechanical quantities, (A.44), and for the

gravitational quantities, (A.45). It is costumary to scale the functions introducing

the set of variables yi’s defined as3:

Um
n = R y1, V m

n = R y2, Ωm
n =

R

r
y3,

Pm
n = 2q

R

r
y4, Φm

n = R y5, Gm
n =

R

r
y6.

(A.46)

Defining yM = [y1, y2, y3, y4]T as the vector for the mechanical quantities, with

the definitions (A.46), the mechanical equations of the system (A.44) can be

written as:

dyM
dr

= MyM , where M =


−2
r

n(n+1)
r

0 0

1
r

−1
r

2
r

0

0 0 0 −1
r

0 0 −n(n+1)
r

1
r

 . (A.47)

3Note that the following definitions differs from those introduced by Alterman et al. (1959)
where a similar approach was first developed.
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Assume power solutions for the yi’s, yi = rk
(j)
y

(j)
i , where j is an index, and y

(j)
i

is a constant. With these definitions, eq. (A.47) becomes
2 + k(j) −n(n+ 1) 0 0

1 −k(j) − 1 −2 0

0 0 k(j) 1

0 0 n(n+ 1) k(j) − 1




y

(j)
1

y
(j)
2

y
(j)
3

y
(j)
4

 =


0

0

0

0

 . (A.48)

The system so expressed has non-trivial solutions if the determinant vanishes,

i.e., if

[−(2 + k(j))(k(j) + 1) + n(n+ 1)][k(j)(k(j) − 1)− n(n+ 1)] = 0, (A.49)

whose roots, which correspond to the eigenvalues, are:

k(1) = n− 1, k(3) = −(n+ 2),

k(2) = n+ 1, k(4) = −n.
(A.50)

The mechanical quantities are defined only for r ≤ R, and since in the tidal

problem n ≥ 2, two solutions are irregular at the origin. The boundary conditions

at the center, r = 0, avoid this singularity (Sec. A.1.9). The general solution for

each mechanical variable yi of yM is then a combination of the four solutions:

yi =
4∑
j=1

C(j)rk
(j)

y
(j)
i , (A.51)

with C(j) representing the constants of integration and y
(j)
i the eigenvectors cor-

responding to the eigenvalues (A.50).

Similarly, defining for the gravitational quantities yG = [y5, y6]T , the corre-

sponding equations of the system (A.45) can be cast in matrix form:

dyG
dr

= GyG, where G =

 0 1
r

n(n+1)
r

−1
r

 . (A.52)
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As done for the mechanical quantities, using power series solutions, yi = rk
(j)
y

(j)
i ,

the system of equations reduces to the solution of the matrix equation: k(j) −1

n(n+ 1) −k(j) − 1

 =

y(j)
5

y
(j)
6

 =

0

0

 . (A.53)

The corresponding eigenvalues are

k(5) = n, k(6) = −(n+ 1). (A.54)

The general solution for the gravitational variables yi of yG is then a combination

of the two solutions:

yi =
6∑
j=5

C(j)rk
(j)

y
(j)
i , (A.55)

with C(j) representing the constants of integration and y
(j)
i the eigenvectors cor-

responding to the eigenvalues (A.54).

For a homogeneous spherically symmetric layer, using equations (A.50), (A.51),

(A.54), and (A.55), the solution can be written as:

y = PC, (A.56)

where

y =

yM
yG

 = [y1, y2, y3, y4, y5, y6]T , (A.57)

P =



nr(n−1) n(n+1)r(n+1) n(n+1)r−n (n+1)r−(n+2) 0 0

r(n−1) (n+3)r(n+1) (2−n)r−n −r−(n+2) 0 0

0 −(2n+3)r(n+1) (2n−1)r−n 0 0 0

0 (n+1)(2n+3)r(n+1) n(2n−1)r−n 0 0 0

0 0 0 0 rn r−(n+1)

0 0 0 0 nrn −(n+1)r−(n+1)


,(A.58)
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and

C = [C(1), C(2), C(3), C(4), C(5), C(6)]T (A.59)

is the vector of integration constants.

A.1.7 Interface conditions in matrix form

The same procedure used to derive the systems of equations (A.44) and (A.45)

can be used to cast the internal interfaces conditions, eq. (A.35) to (A.41), as:

[Um
n ]+− = 0, (A.60)

[V m
n ]+− = 0, (A.61)[
Pm
n − 2qUm

n,r + ρ
(
Φm
n + g(0)

r Um
n

)]+
− = 0, (A.62)[

q
(
Um
n + rV m

n,r − V m
n

)]+
− = 0, (A.63)

[Φm
n ]+− = 0, (A.64)

[Gm
n − 4πGρUm

n ]+− = 0. (A.65)

With the definitions given in (A.46), the continuity of the displacement, Eq.

(A.60) and (A.61), of the potential, Eq. (A.64), and of the potential gradient,

Eq. (A.65), simply translates into the conditions:

[y1]+− = 0, (A.66)

[y2]+− = 0, (A.67)

[y5]+− = 0, (A.68)[y6

r
− 4πρGy1

]+

−
= 0. (A.69)

The terms Un,r and Vn,r in the third and fourth interface conditions can be elim-

inated by using the first and second equation in (A.44). Thus Eq. (A.62) and
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(A.63) become: [
2µ

r
y4 +

4µ

r
y1 −

2µ

r
n(n+ 1)y2 + ρy5 + ρgy1

]+

−
= 0, (A.70)

[µ (y1 − y2 − y3)]+− = 0. (A.71)

If y+ and y− represent the solution vectors above and below the boundary at r−,

the interface conditions just derived allow to link y+ to y− as:

y+(r−) = B(r−)y−(r−), (A.72)

where the boundary matrix B, using Eq. (A.66) to (A.71), is

B =



1 0 0 0 0 0

0 1 0 0 0 0

−∆q
q+

∆q
q+

q−

q+
0 0 0(

2∆q
q+

+
∆ρr−g

(0)

r−
2q+

)
−n(n+ 1)∆q

q+
0 q−

q+
∆ρr−

2q+
0

0 0 0 0 1 0

−4πGr−∆ρ 0 0 0 0 1


. (A.73)

where the notation ∆f indicates f+ − f−.

A.1.8 Propagator matrix technique

According to the results of Sec. A.1.6, the system of equations for a spherically

symmetric planet can be cast as:

dy

dr
= Ay. (A.74)

The general solution is written, Eq. (A.56), as y(r) = P(r, s)C, where the

vector C represents the six constants of integration. The planetary models used

in this study (section 2.4.1) are made of a series of constant property layers.

The interface conditions, eq. (A.35) to (A.41), can be expressed through the
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Figure A.1: Schematic structure of the vector of solution y and radius r for a planetary

model. The center of the planet is at r = 0, the surface at r = R. Each homogeneous

layer is indicated by the index corresponding to the outer boundary of the layer.

boundary matrix B, Eq. (A.73), which connects the solutions on the two sides

of a boundary. With reference to the interface at r = ri−1 in Figure A.1, the two

solutions to be matched are:

y(i)(ri−1) = Pi(ri−1, s)C
(i), (A.75)

y(i−1)(ri−1) = Pi−1(ri−1, s)C
(i−1). (A.76)

The interface matrixB(ri−1, s) provides the connection between the two solutions:

y(i)(ri−1) = B(ri−1, s)y
(i−1)(ri−1). (A.77)

With the last three expressions the vector of constants C(i) can be expressed in

terms of the vector of constants C(i−1) :

C(i) = [Pi(ri−1, s)]
−1 B(ri−1, s)Pi−1(ri−1, s)C

(i−1). (A.78)

From eq. (A.75) and (A.78), the solution for y(i) at r = ri is

y(i)(ri, s) = Pi(ri, s) [Pi(ri−1, s)]
−1 B(ri−1, s)Pi−1(ri−1, s)C

(i−1), (A.79)

and the vector of integration constant C(i) does not appear anymore. By extend-

ing this approach to each layer, the solution y(N) at rN can then be written as
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the product of a sequence of terms and the vector of constants at the center of

the planet:

y(N)(rN) =

{
N∏
k=2

Pk(rk) [Pk(rk−1)]−1 B(rk−1)

}
P1(r1)C(1). (A.80)

A.1.9 Boundary conditions

Six constants of integration are required for a solution of the system of equations

(A.74). Three are imposed at the center of the planet, where the displacement

(y1 and y2) and the incremental potential (y5) are zero. Three are imposed at

the surface, which is a free surface, and thus it has to be stress free (y3 and y4

are zero). The boundary condition on the gravity is obtained by the continuity

of the gravitational potential across the surface. The variable y5 is proportional

to the radial part of φ(∆), and it is the sum of the tidal component, yt
5, and the

deformation component, yd
5. For r < R the normalized potential of deformation

is (Takeuchi et al., 1962):

yd
5(r ≤ R) = y5 − yt

5 =
[
y5(r)−

( r
R

)n]
. (A.81)

For r > R, the deformation potential is a harmonic function with general solution

y5(r > R) ∝ A(r/R)n+B(r/R)−(n+1). The constant A has to be zero in order for

the potential to go to zero for (r/R)→∞. The potential is a continuous function,

and the constant B has to match the value of the potential at the surface, which

from eq. (A.81) for r = R, is yd
5 = [y5(R)− 1]. Thus:

yd
5(r > R) = [y5(R)− 1]

( r
R

)−(n+1)

. (A.82)

The above descriptions of the potential above and below the surface of the planet

allows to derive the continuity condition for the potential gradient. The difference

between the potential gradient above and below the surface has to be equal to
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−4πGρur (from the Gauss law applied across the surface) The gradients are

obtained from eq. (A.81) and eq. (A.82). The condition is thus:

dy5

dr
− 4πρGur +

n+ 1

R
y5 =

2n+ 1

R
. (A.83)

The previous expression in terms of y6 and y1 becomes4 :

y6 − 4πρGRy1 +
n+ 1

R
y5 =

2n+ 1

R
. (A.84)

A.2 Physical properties of terrestrial material

The material properties enter the solution of the viscoelastic models described in

section A.1 through the stress-relaxation functionm(t−t′) and the density ρ (see,

e.g., eq. (A.10) and (A.11)). In general the rheological behavior is mostly con-

trolled by thermally activated processes (e.g., Karato, 2008) and the rheological

characterization of a planetary model requires the determination of a tempera-

ture profile. We obtain this temperature profile under the assumption that heat

is transported via conduction in the mantle and in the crust. The assumption

of conductive transport in the mantle of Mercury is further discussed in section

2.4.2.

In this section we report one particular solution for the heat conduction equa-

tion that is not readily available in the literature. We also discuss the Maxwell

and the Andrade rheological models that will be used to model the tidal response

of the subsurface materials of Mercury.
4Note that different authors have defined y6 in different ways. For example Alterman et al.

(1959) defines y6 = (dy5/dr)− 4πρGur, while Tobie et al. (2005) define y6 as the left hand side
of eq. (A.83).
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A.2.1 Solution of the heat conduction equation in spherical coordi-

nates with heat sources

We are interested in the conductive temperature profile in a spherical shell with

the presence of heat sources. The equation to be solved is (e.g., Turcotte and

Schubert , 2002):

k
1

r2

d

dr

(
r2dT

dr

)
+ ρH = 0, (A.85)

where k is the conductivity, ρ is the density, and H is the heat production rate.

The solution of equation (A.85) for the case of constantH if found in the literature

(e.g., Turcotte and Schubert , 2002):

T = c2 −
c1

r
− 1

6

ρH

k
r2, (A.86)

where c1 and c2 are two constants of integration.

We report here the solution for the case of exponential profile for H, H =

H0 exp [(r −R)/h], whereH0 is a constant, h is the length scale, andR is the outer

radius of the shell. By defining A = ρH0

k
exp

[
−R

h

]
, equation (A.85) becomes:

d

dr

(
r2dT

dr

)
+ Ar2 exp

[ r
h

]
= 0. (A.87)

A first integration gives

dT

dr
+ hA exp

[ r
h

] [
1− 2

(
h

r

)
+ 2

(
h

r

)2
]

=
c1

r2
, (A.88)

with c1 a constant of integration. The second term on the left hand side is

obtained by twice applying integration by parts to the corresponding term in

equation (A.87). Defining x = r/h, a second integration involves the solution of

the following integrals:

I1 =

∫
1

x
exp(x)dx, (A.89)

I2 =

∫
1

x2
exp(x)dx = −1

x
exp(x) + I1. (A.90)
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I1 has no analytical solution, but the integration of (A.88) gives:

T + h2A

{∫
exp(x)

[
1− 2

(
1

x

)
+ +2

(
1

x

)2
]
d(x)

}
= −c1

r
+ c2,(A.91)

T + h2A [exp(x)− 2I1 + 2I2] = −c1

r
+ c2,(A.92)

T + h2A exp

(
h

r

)[
1− 2

( r
h

)]
= −c1

r
+ c2,(A.93)

with c2 a second constant of integration. The solution is analytical since the

terms proportional to I1 cancel out.

A.2.2 Rheological models

The response of planetary materials to an applied forcing strongly depends on

the timescale of the forcing, much like the case of the Silly Putty R© (Figure A.2).

The response is elastic-like at short timescales and fluid-like at long timescales.

There are several models that capture this long- and short-timescale behavior.

We describe below the Maxwell and the Andrade model, which we use in Chapter

2 to model the tidal response of Mercury.

A.2.3 Maxwell rheological model

In one dimension the Maxwell model is constructed by a series connection of an

elastic element (Hookean spring) and a viscous element (dashpot). It is com-

pletely defined by two parameters, the unrelaxed (infinite-frequency) rigidity µU

of the spring, which has units of Pa, and the dynamic viscosity ν of the dashpot,

which has units of Pa s. This implicitly introduces a timescale in the system, the

Maxwell time, defined as

τM =
ν

µU
, (A.94)
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Figure A.2: Silly Putty R© behaves as an elastic solid on short timescales (left,

drop-weight impact test on a white cylinder of Silly Putty R©) and as a fluid over

long timescales (right). This timescale-dependent behavior is qualitatively similar

to the response of mantle materials. Credit: http://youtu.be/ZShiIA30jXU and

http://youtu.be/wrpgq7WHtgU

which is a timescale that separates the elastic regime (forcing period� τM) from

the fluid regime (forcing period � τM).

We derive here the three-dimensional stress-strain relation for a Maxwell body.

Even if we do not employ it for the results presented in Chapter 2, it is required

for the calculation of the tidal dissipation in the interior of a planet (section

5.2). The three-dimensional stress-strain relation for a Maxwell body is obtained

by combining the elastic response of the axial component with the viscoelastic

response of the deviatoric component. From the relation:

εxx =
1

E
[σxx − ν (σyy + σzz)] , (A.95)

with E the Young’s modulus and ν the Poisson’s ratio, the stress-strain relation-

ship for the average normal stress σv = σkk/3, is

εv =
1

3K
σv, (A.96)
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where K = E/[3(1 − 2ν)] is the bulk modulus. For the shear component, the

stress-strain relation is obtained under the condition that the total strain is the

sum of the strain of the spring (ε = σ/2µ) and of the dashpot5 (ε̇ = σ/2η):

dij,t =
1

2µ
τij,t +

1

2η
τij, (A.97)

where the deviatoric strain and stress are dij = εij − εvδij and τij = σij − σvδij.

With these definitions equation (A.97) can be rewritten as:

εij,t −
1

3
εkk,tδij =

1

2µ

[
σij,t −

1

3
σkk,tδij

]
+

1

2η

[
σij −

1

3
σkkδij

]
. (A.98)

Rearranging and using the time derivative of equation (A.96) gives:

σij,t +

(
µ

η

)[
σij −

1

3
σkkδij

]
= 2µεij,t +

[
K − 2

3
µ

]
εkk,tδij, (A.99)

which agrees with equation (11) in Tobie et al. (2005) and equation (2) in Peltier

(1974).

A.2.4 Andrade rheological model

The Maxwell rheological model is in many cases unable to reproduce both labo-

ratory and field data (see section 2.3.1), and alternative rheological models have

been proposed. Using the work of Jackson et al. (2010) as a guide we considered

the Extended Burgers (EB) model and the Andrade Pseudo-period (AP) model.

The work of Jackson et al. (2010) focuses on the EB model because of its ability

to fit laboratory data at both short and long timescales. However the fit at the

long-timescale, more relevant to the tidal timescales, is similar for the two models

and we choose the AP model for its smaller number of parameters (additional
5In many textbooks the factor 2 does not appear (e.g., Findley et al., 1983), since only the

one dimensional problem is treated. The factor 2 comes from the fact that the relation is valid
for the angle change γij induced by the shear, and γij = 2εij .
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motivations for this choice are described in section 2.3). In the following sec-

tions we describe how we tested the performance of the AP model against the fit

obtained with the EB model described in the paper by Jackson et al. (2010).

A.2.4.1 Calculation of J(ω) with the Andrade-pseudoperiod model of

Jackson et al. (2010)

Calculating the rheological properties of a material using the AP model requires

the evaluation of the real and imaginary parts of the frequency-dependent com-

plex compliance J , equations (2.5) and (2.6), and of the master variable XB,

equation (2.7). We report here their expressions for clarity:

JR(ω) =
1

µU

{
1 + β∗Γ(1 + n)ω−n cos

(nπ
2

)}
, (A.100)

JI(ω) =
1

µU

{
β∗Γ(1 + n)ω−n sin

(nπ
2

)
+

1

ωτM

}
, (A.101)

XB = T0

(
d

dR

)−m

exp

[(
−EB

R

)(
1

T
− 1

TR

)]
×

× exp

[(
−V
R

)(
P

T
− PR

TR

)]
. (A.102)

The pseudo-period master variable XB includes the rheological effects of tem-

perature T , grainsize d, and pressure P . The frequency is indicated with ω, a

subscript R indicates a reference value (they are listed in Table 2.1), T0, EB, and

V are constants, and m characterize the dependence on the grain size, which

in principle can be different for anelastic processes (ma) and for viscous relax-

ation (mv). In calculating the imaginary part of the compliance JI(ω), equation

(A.101), we keep the value of τM equal to the reference value reported in Table

1 of Jackson et al. (2010) (log τMR = 5.3). This approach allows us to reproduce

accurately the fits shown in Figure 1 of Jackson et al. (2010), which are shown

in Figure A.3.
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Figure A.3: Rigidity µ (top) and inverse quality factor Q−1 (bottom) as a function of

the forcing period, obtained to test the agreement of our model (left) with panels e and

f of Figure 1 of Jackson et al. (2010), (right). The “Shear modulus” in the figures of

Jackson et al. (2010) corresponds to our “rigidity µ”.

We also applied the AP model to the data shown in Figure 2 of Jackson et al.

(2010), to compare the AP model with the EB model for different grain-sizes. In

doing so we identified the parameter α in Table 2 of Jackson et al. (2010) with

the parameter n of the Andrade model, as suggested in Sec 4.2 of Jackson et al.

(2010). Figure A.4 shows the results for the two specimens #6381 (d=2.9µm)

and #6328 (d=165.1µm). The prediction of the Andrade is comparable to the fit

obtained with the EB model. For the specimen #6328 at T = 1200 ◦C the rigidity

of the Andrade is a little higher than for the EB, but the data for T = 1200 ◦C
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Figure A.4: Rigidity µ as a function of the forcing period for specimen 6381 (top) and

6328 (bottom), obtained to test the agreement of our model (left) with panels a and i of

Figure 2 of Jackson et al. (2010) (right). The curves are obtained with the parameters

in the top part of Table 2 of Jackson et al. (2010), where we identified α of the EB

model with the parameter n of the AP model.

in panel i of Figure 2 in Jackson et al. (2010) show the same behavior.
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Figure A.5: Rigidity µ as a function of the forcing period. Effect of the grain size

exponent m. (Left) ma = mv = 1.31. (Right) ma = 1.31, mv = 3. The dashed line

indicates the forcing period of Mercury’s tide.

A.2.4.2 Effects of the difference between ma and mv

We include the effects of different grain-size dependence for anelastic and viscous

relaxation by defining two pseudo-period master variables, one for anelastic pro-

cesses, Xa
B, and one for viscous relaxation, Xv

B, with corresponding ωa and ωv.

Thus equations (A.100) and (A.101) can be rewritten as

JR(ω) =
1

µU

{
1 + β∗Γ(1 + n)ω−na cos

(nπ
2

)}
, (A.103)

JI(ω) =
1

µU

{
β∗Γ(1 + n)ω−na sin

(nπ
2

)
+

1

ωvτM

}
(A.104)

Following the parameters explored in Jackson et al. (2010) we tested the case of

ma = mv = 1.31 and the case of ma = 1.31 and mv = 3. Since mv controls the

transition to the viscous behavior, differences in these two cases appear at large

periods. Nevertheless there is not much difference at the frequency considered

for Mercury. This is shown in Figures A.5 and A.6 for the rigidity µ and Q−1,

respectively.
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Figure A.6: Dissipation as a function of the forcing period. Effect of the grain size

exponent m. (Left) ma = mv = 1.31. (Right) ma = 1.31, mv = 3. The dashed line

indicates the forcing period of Mercury’s tide.

A.2.4.3 The viscosity

Once the complex compliance is calculated, the rigidity is obtained from

µ(ω) =
[
J2

R(ω) + J2
I (ω)

]−1/2
. (A.105)

Since we keep τM = τMR and include T, P, and d effects in the pseudo-period

master variable, we do not need to make assumptions on the viscosity. We get the

dynamic viscosity from the imaginary component of the compliance, ν = 1/(JIω),

i.e., it is the viscosity of a Maxwell body with the same rheological response of

the Andrade model. Note however that the viscosity mostly affects Im(k2), not

its real part. For example, we compared the values of k2 for a model with a

homogeneous elastic mantle (ν = 1021 Pa s) with a model where the mantle has

a viscosity of 2× 1018 Pa s. The relative difference in Re(k2) is < 10−3, but it is

∼ 5× 102 in Im(k2).
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APPENDIX B

Useful operator and tensor expressions

The following list of useful relations is reproduced from Malvern (1969). In a

orthogonal curvilinear coordinate system, the divergence of a vector v is defined

as:

∇ · v =
1
√
g

∑
n

∂

∂xn

(√
g

hn
vn

)
, (B.1)

where hn is the scale factor and √g = h1h2h3. The gradient operator is defined

as:

∇ =
∑
n

ên
1

hn

∂

∂xn
. (B.2)

The curl operator of a vector v is

∇× v =
∑
n

[∑
p,q

εnpq
1

hphq

∂

∂xp
(vqhq)

]
ên (B.3)

To obtain these operators in spherical coordinates, only the scale factors are

required, which are

hr = 1, hθ = r, , hφ = r sin θ. (B.4)

Spherical coordinates are defined as (radius, colatitude, longitude)=(r, θ, λ). The

gradient is:

∇ =
1

r2

∂

∂r
+

1

r sin θ

∂

∂θ
+

1

r sin θ

∂

∂λ
. (B.5)

The Laplacian is

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin2 θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂2λ
. (B.6)
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The curl of a vector v is

∇× v =
1

r sin θ

[
∂

∂θ
(vλ sin θ)

]
r̂ +

1

r

[
1

sin θ

∂vr
∂λ
− ∂

∂r
(rvλ)

]
θ̂ +

1

r

[
∂

∂r
(rvθ)−

∂vr
∂θ

]
λ̂ (B.7)

In a general orthogonal curvilinear coordinate system, the general expression for

the strain components (Malvern, 1969, p. 659) is

εii =
1

hi

∂ui
∂xi

+
uj
hjhi

∂hi
∂xj

+
uk
hkhi

∂hi
∂xk

, (B.8)

εij =
1

2

[
1

hj

∂ui
∂xj

+
1

hi

∂uj
∂xi
− 1

hihj

(
ui
∂hi
∂xj

+ uj
∂hj
∂xi

)]
. (B.9)

A similar expression holds for the rotation:

− ωk = Ωij =
1

2

[
1

hj

∂ui
∂xj
− 1

hi

∂uj
∂xi

+
1

hihj

(
ui
∂hi
∂xj
− uj

∂hj
∂xi

)]
. (B.10)
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APPENDIX C

Effect of the inner core on the tidal response

The effect of the inner core density on the magnitude of k2 is shown in Figure C.1.

The relatively weak trend indicates that the Love number k2 is not very sensitive

to the density of the inner core. A similar plot for k2 as a function of the ratio

of the inner core radius, ric, to the radius of the outer core, roc, is shown in the

bottom panel of Figure C.2. The results show that k2 is independent of the ratio

of inner-core radius to outer-core radius as long as the inner core is sufficiently

small. The lack of shear strength of the liquid of the outer core increases the

tidal response and makes it independent of the size of the inner core, as long as

the radius ratio is .0.6.

Similarly, variations in the viscosity and rigidity of the inner core affect the

value of k2 only for those models that have a large inner core. Less than 20% of

the models have a large inner core with ric/roc > 0.6 as shown by the cumula-

tive histogram in the top panel of Figure C.2. A very large inner core may be

detectable, because it would modify the libration of Mercury (Van Hoolst et al.,

2012) at a level that is comparable to the current observational accuracy of the

libration measurements (Margot et al., 2012).
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Figure C.1: Love number k2 as a function of the inner core density. Blue and red points

correspond to models with and without an FeS layer at the top of the core, respectively.

Figure C.2: (Top) Cumulative histogram of the ratio of the inner core radius ric to the

liquid outer core radius roc. More than 80% of the models have ric/roc < 0.6. (Bottom)

k2 as a function of the inner core radius expressed in units of outer core radius. Blue

and red points correspond to models with and without an FeS layer at the top of the

core, respectively. Points with an abscissa close to one correspond to models for which

the outer liquid core is very thin. Models in which the core is completely solid have k2

values that are smaller by approximately an order of magnitude (not shown).
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APPENDIX D

Background materials for chapter 4

D.1 Airy isostasy on a spherical body

In the Airy isostatic compensation model for a flat crust, the weight of different

columns is the same at some compensation depth. On a spherical body the

convergence of the columns must be taken into account. With reference to figure

D.1, H is the thickness of the crust at zero-elevation of a planet whose radius is

R. The topography h is compensated at the crust-mantle boundary by the root

h∗. At the compensation radius R−H− h∗ the weight of the two columns is the

same. For column 1 the contribution is

1 : ρm

R−H∫
R−H−h∗

r2dr = ρm (R− H)2 h∗

[
1−

(
h∗

R− H

)
+

1

3

(
h∗

R− H

)2
]
. (D.1)

For column 2 the contribution of the surface topography (2t) and its root (2r)

has to be taken into account:

2t : ρc

R+h∫
R

r2dr = ρcR
2h

[
1 +

h

R
+

1

3

(
h

R

)2
]
, (D.2)

2r : ρm

R−H∫
R−H−h∗

r2dr = ρm (R− H)2 h∗

[
1−

(
h∗

R− H

)
+

1

3

(
h∗

R− H

)2
]
. (D.3)

By equating the contributions of the two sectors, and under the assumption that

h and h∗ are much smaller than R, the relation between h∗ and h for spherical
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Figure D.1: Airy isostasy on a spherical planet. Golden: crustal material of density

ρc. Brown: mantle material of density ρm. H is the crustal thickness at zero elevation.

The topography and its root are indicated with h and h∗, respectively.

Airy isostasy is

h∗ =

(
R

R− H

)2
ρc

ρm − ρc
h. (D.4)

D.2 Potential of an irregularly shaped shell

The potential δV at a distance L from of point mass dM is

δV =
GdM

L
. (D.5)
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The factor (1/L) can be expanded in spherical harmonics as1 (e.g., Arfken and

Weber , 2005):

1

L
=

1

r

∑
n

(
r′

r

)n

Pn (cosψ) (D.6)

=
1

r

∑
inm

(
r′

r

)n
1

(2n+ 1)
Yinm(θ′, λ′)Yinm(θ, λ), (D.7)

where Ψ is the angle between r and r′, the modules of the vectors connecting the

center of the shell with the observation point and dM , respectively. In spherical

coordinates the infinitesimal mass is

dM = (r′)2dr′dS, (D.8)

where dS is the solid angle. The radius of an irregularly shaped shell can be

expressed as

r′ = r0

[
1 +

∑
inm

drinmYinm

]
, (D.9)

where drinm are spherical harmonics coefficients. The potential of an irregularly

shaped shell can be obtained by substituting equations (D.7), (D.8), and (D.9)

in equation (D.5) and integrating over the volume of the shell. Using the or-

thogonality properties of the spherical harmonics and at first order in drinm the

potential of the shell is:

∆V =

∫
δV =

4πGr3
0

r

∑
inm

∆ρ
(r0

r

)n Yinm

2n+ 1
drinm, (D.10)

where ∆ρ is the density contrast across the shell. By comparison with the po-

tential written in the standard form

V =
GM

r

∑
inm

(
R

r

)n
CinmYinm, (D.11)

1The convention for the coordinates is the same as in Chapter 1, therefore primed coordinates
refers to the body, unprimed to the observation point. We use the compact notation Yinm to
indicate Pnm(sin θ) cosλ for i = 1 and Pnm(sin θ) sinλ for i = 2. Compare with equation 1.6.
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the Stokes coefficients for the irregularly shaped shell are (Lambeck , 1988):

Cinm =
4πR3

M(2n+ 1)

(r0

R

)n+3
∆ρ drinm. (D.12)

D.3 Admittance function for an Airy compensated crust

The topography and potential coefficients are related through the admittance

function Zn (e.g., Wieczorek and Phillips , 1997):

Cnm = Znhnm, (D.13)

which depends on the harmonic degree n. An Airy compensated crust is char-

acterized by a surface topography which is related to the crust-mantle interface

through equation (D.4). The Stokes coefficients for the surface topography are

obtained by setting r0 = R and ∆ρ = ρc in equation (D.12). For the crust-mantle

interface r0 = R−H and ∆ρ = ρm−ρc. By adding the contribution of surface to-

pography and crust-mantle interface, and using the spherical Airy compensation

relation, equation (D.4), the Stokes coefficients for an Airy compensated crust

are

Cnm =
4πR3

M(2n+ 1)
ρc

[
1−

(
R− H
R

)n]
hnm. (D.14)

With equation (D.14) and indicating with ρ the mean density of the planet, the

admittance function for Airy isostatic compensation is

Zn =
3

2n+ 1

ρc

ρ

[
1−

(
R− H
R

)n]
. (D.15)

This expression is necessary to infer the thickness of an Airy-compensated crust

from the geoid-to-topography ratios (Chapter 4).
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