Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Efficient few-shot machine learning for classification of EBSD patterns


Deep learning is quickly becoming a standard approach to solving a range of materials science objectives, particularly in the field of computer vision. However, labeled datasets large enough to train neural networks from scratch can be challenging to collect. One approach to accelerating the training of deep learning models such as convolutional neural networks is the transfer of weights from models trained on unrelated image classification problems, commonly referred to as transfer learning. The powerful feature extractors learned previously can potentially be fine-tuned for a new classification problem without hindering performance. Transfer learning can also improve the results of training a model using a small amount of data, known as few-shot learning. Herein, we test the effectiveness of a few-shot transfer learning approach for the classification of electron backscatter diffraction (EBSD) pattern images to six space groups within the [Formula: see text] point group. Training history and performance metrics are compared with a model of the same architecture trained from scratch. In an effort to make this approach more explainable, visualization of filters, activation maps, and Shapley values are utilized to provide insight into the model's operations. The applicability to real-world phase identification and differentiation is demonstrated using dual phase materials that are challenging to analyze with traditional methods.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View