Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Serelaxin induces Notch1 signaling and alleviates hepatocellular damage in orthotopic liver transplantation

Published Web Location

https://doi.org/10.1111/ajt.14706
Abstract

Liver ischemia-reperfusion injury (IRI) represents a risk factor for early graft dysfunction and an obstacle to expanding donor pool in orthotopic liver transplantation (OLT). We have reported on the crucial role of macrophage Notch1 signaling in mouse warm hepatic IRI model. However, its clinical relevance or therapeutic potential remain unknown. Here, we used Serelaxin (SER), to verify Notch1 induction and putative hepatoprotective function in ischemia-reperfusion-stressed OLT. C57BL/6 mouse livers subjected to extended (18-hour) cold storage were transplanted to syngeneic recipients. SER treatment at reperfusion ameliorated IRI, improved post-OLT survival, decreased neutrophil/macrophage infiltration, and suppressed proinflammatory cytokine programs, while simultaneously increasing Notch intracellular domain (NICD) and hairy and enhancer of split 1 (Hes1) target genes. In bone marrow-derived macrophage cultures, SER suppressed proinflammatory while enhancing antiinflammatory gene expression concomitantly with increased NICD and Hes1. Hepatic biopsies from 21 adult primary liver transplant patients (2 hours postreperfusion) were divided into low-NICD (n = 11) and high-NICD (n = 10) expression groups (western blots). Consistent with our murine findings, human livers characterized by high NICD were relatively IRI resistant, as shown by serum alanine aminotransferase (ALT) levels at day 1 post-OLT. Our study documents the efficacy of SER-Notch1 signaling in mouse OLT and highlights the protective function of Notch1 in liver transplant patients.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View